![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atn0 | Structured version Visualization version GIF version |
Description: An atom is not zero. (atne0 32377 analog.) (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
atne0.z | ⊢ 0 = (0.‘𝐾) |
atne0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atn0 | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2740 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | atne0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
4 | atne0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | isat3 39263 | . . 3 ⊢ (𝐾 ∈ AtLat → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ (Base‘𝐾) ∧ 𝑃 ≠ 0 ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))))) |
6 | simp2 1137 | . . 3 ⊢ ((𝑃 ∈ (Base‘𝐾) ∧ 𝑃 ≠ 0 ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))) → 𝑃 ≠ 0 ) | |
7 | 5, 6 | biimtrdi 253 | . 2 ⊢ (𝐾 ∈ AtLat → (𝑃 ∈ 𝐴 → 𝑃 ≠ 0 )) |
8 | 7 | imp 406 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 lecple 17318 0.cp0 18493 Atomscatm 39219 AtLatcal 39220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-plt 18400 df-glb 18417 df-p0 18495 df-covers 39222 df-ats 39223 df-atl 39254 |
This theorem is referenced by: atncvrN 39271 atnle 39273 atlatmstc 39275 intnatN 39364 atcvrneN 39387 atcvrj2b 39389 2llnm3N 39526 pmapjat1 39810 lhpocnle 39973 lhpmatb 39988 lhp2atnle 39990 trlatn0 40129 ltrnnidn 40131 trlnidatb 40134 cdlemg33c 40665 cdlemg33e 40667 dihatexv 41295 |
Copyright terms: Public domain | W3C validator |