| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atn0 | Structured version Visualization version GIF version | ||
| Description: An atom is not zero. (atne0 32307 analog.) (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| atne0.z | ⊢ 0 = (0.‘𝐾) |
| atne0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atn0 | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2729 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | atne0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 4 | atne0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 1, 2, 3, 4 | isat3 39285 | . . 3 ⊢ (𝐾 ∈ AtLat → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ (Base‘𝐾) ∧ 𝑃 ≠ 0 ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))))) |
| 6 | simp2 1137 | . . 3 ⊢ ((𝑃 ∈ (Base‘𝐾) ∧ 𝑃 ≠ 0 ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))) → 𝑃 ≠ 0 ) | |
| 7 | 5, 6 | biimtrdi 253 | . 2 ⊢ (𝐾 ∈ AtLat → (𝑃 ∈ 𝐴 → 𝑃 ≠ 0 )) |
| 8 | 7 | imp 406 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 class class class wbr 5095 ‘cfv 6486 Basecbs 17138 lecple 17186 0.cp0 18345 Atomscatm 39241 AtLatcal 39242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-plt 18252 df-glb 18269 df-p0 18347 df-covers 39244 df-ats 39245 df-atl 39276 |
| This theorem is referenced by: atncvrN 39293 atnle 39295 atlatmstc 39297 intnatN 39386 atcvrneN 39409 atcvrj2b 39411 2llnm3N 39548 pmapjat1 39832 lhpocnle 39995 lhpmatb 40010 lhp2atnle 40012 trlatn0 40151 ltrnnidn 40153 trlnidatb 40156 cdlemg33c 40687 cdlemg33e 40689 dihatexv 41317 |
| Copyright terms: Public domain | W3C validator |