| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atn0 | Structured version Visualization version GIF version | ||
| Description: An atom is not zero. (atne0 32323 analog.) (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| atne0.z | ⊢ 0 = (0.‘𝐾) |
| atne0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atn0 | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2731 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | atne0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 4 | atne0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 1, 2, 3, 4 | isat3 39352 | . . 3 ⊢ (𝐾 ∈ AtLat → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ (Base‘𝐾) ∧ 𝑃 ≠ 0 ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))))) |
| 6 | simp2 1137 | . . 3 ⊢ ((𝑃 ∈ (Base‘𝐾) ∧ 𝑃 ≠ 0 ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))) → 𝑃 ≠ 0 ) | |
| 7 | 5, 6 | biimtrdi 253 | . 2 ⊢ (𝐾 ∈ AtLat → (𝑃 ∈ 𝐴 → 𝑃 ≠ 0 )) |
| 8 | 7 | imp 406 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 class class class wbr 5091 ‘cfv 6481 Basecbs 17120 lecple 17168 0.cp0 18327 Atomscatm 39308 AtLatcal 39309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-plt 18234 df-glb 18251 df-p0 18329 df-covers 39311 df-ats 39312 df-atl 39343 |
| This theorem is referenced by: atncvrN 39360 atnle 39362 atlatmstc 39364 intnatN 39452 atcvrneN 39475 atcvrj2b 39477 2llnm3N 39614 pmapjat1 39898 lhpocnle 40061 lhpmatb 40076 lhp2atnle 40078 trlatn0 40217 ltrnnidn 40219 trlnidatb 40222 cdlemg33c 40753 cdlemg33e 40755 dihatexv 41383 |
| Copyright terms: Public domain | W3C validator |