Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atn0 | Structured version Visualization version GIF version |
Description: An atom is not zero. (atne0 30707 analog.) (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
atne0.z | ⊢ 0 = (0.‘𝐾) |
atne0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atn0 | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2738 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | atne0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
4 | atne0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | isat3 37321 | . . 3 ⊢ (𝐾 ∈ AtLat → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ (Base‘𝐾) ∧ 𝑃 ≠ 0 ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))))) |
6 | simp2 1136 | . . 3 ⊢ ((𝑃 ∈ (Base‘𝐾) ∧ 𝑃 ≠ 0 ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))) → 𝑃 ≠ 0 ) | |
7 | 5, 6 | syl6bi 252 | . 2 ⊢ (𝐾 ∈ AtLat → (𝑃 ∈ 𝐴 → 𝑃 ≠ 0 )) |
8 | 7 | imp 407 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 lecple 16969 0.cp0 18141 Atomscatm 37277 AtLatcal 37278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-plt 18048 df-glb 18065 df-p0 18143 df-covers 37280 df-ats 37281 df-atl 37312 |
This theorem is referenced by: atncvrN 37329 atnle 37331 atlatmstc 37333 intnatN 37421 atcvrneN 37444 atcvrj2b 37446 2llnm3N 37583 pmapjat1 37867 lhpocnle 38030 lhpmatb 38045 lhp2atnle 38047 trlatn0 38186 ltrnnidn 38188 trlnidatb 38191 cdlemg33c 38722 cdlemg33e 38724 dihatexv 39352 |
Copyright terms: Public domain | W3C validator |