![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldioph3b | Structured version Visualization version GIF version |
Description: Define Diophantine sets in terms of polynomials with variables indexed by ℕ. This avoids a quantifier over the number of witness variables and will be easier to use than eldiophb 38157 in most cases. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
Ref | Expression |
---|---|
eldioph3b | ⊢ (𝐴 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘ℕ)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑𝑚 ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldiophelnn0 38164 | . 2 ⊢ (𝐴 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0) | |
2 | nnex 11357 | . . 3 ⊢ ℕ ∈ V | |
3 | 1z 11735 | . . . . 5 ⊢ 1 ∈ ℤ | |
4 | nnuz 12005 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
5 | 4 | uzinf 13059 | . . . . 5 ⊢ (1 ∈ ℤ → ¬ ℕ ∈ Fin) |
6 | 3, 5 | ax-mp 5 | . . . 4 ⊢ ¬ ℕ ∈ Fin |
7 | elfznn 12663 | . . . . 5 ⊢ (𝑝 ∈ (1...𝑁) → 𝑝 ∈ ℕ) | |
8 | 7 | ssriv 3831 | . . . 4 ⊢ (1...𝑁) ⊆ ℕ |
9 | eldioph2b 38163 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘ℕ)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑𝑚 ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) | |
10 | 6, 8, 9 | mpanr12 696 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘ℕ)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑𝑚 ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) |
11 | 2, 10 | mpan2 682 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘ℕ)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑𝑚 ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) |
12 | 1, 11 | biadanii 857 | 1 ⊢ (𝐴 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘ℕ)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑𝑚 ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 {cab 2811 ∃wrex 3118 Vcvv 3414 ⊆ wss 3798 ↾ cres 5344 ‘cfv 6123 (class class class)co 6905 ↑𝑚 cmap 8122 Fincfn 8222 0cc0 10252 1c1 10253 ℕcn 11350 ℕ0cn0 11618 ℤcz 11704 ...cfz 12619 mzPolycmzp 38122 Diophcdioph 38155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-of 7157 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-card 9078 df-cda 9305 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-hash 13411 df-mzpcl 38123 df-mzp 38124 df-dioph 38156 |
This theorem is referenced by: eldioph3 38166 eldiophss 38175 diophrex 38176 |
Copyright terms: Public domain | W3C validator |