Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppgcntz | Structured version Visualization version GIF version |
Description: A centralizer in a group is the same as the centralizer in the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
oppggic.o | ⊢ 𝑂 = (oppg‘𝐺) |
oppgcntz.z | ⊢ 𝑍 = (Cntz‘𝐺) |
Ref | Expression |
---|---|
oppgcntz | ⊢ (𝑍‘𝐴) = ((Cntz‘𝑂)‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2747 | . . . . . . 7 ⊢ ((𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ (𝑦(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)𝑦)) | |
2 | eqid 2740 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | oppggic.o | . . . . . . . . 9 ⊢ 𝑂 = (oppg‘𝐺) | |
4 | eqid 2740 | . . . . . . . . 9 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
5 | 2, 3, 4 | oppgplus 18951 | . . . . . . . 8 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝐺)𝑥) |
6 | 2, 3, 4 | oppgplus 18951 | . . . . . . . 8 ⊢ (𝑦(+g‘𝑂)𝑥) = (𝑥(+g‘𝐺)𝑦) |
7 | 5, 6 | eqeq12i 2758 | . . . . . . 7 ⊢ ((𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥) ↔ (𝑦(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)𝑦)) |
8 | 1, 7 | bitr4i 277 | . . . . . 6 ⊢ ((𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)) |
9 | 8 | ralbii 3093 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)) |
10 | 9 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥))) |
11 | 10 | anbi2i 623 | . . 3 ⊢ ((𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)))) |
12 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
13 | oppgcntz.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝐺) | |
14 | 12, 13 | cntzrcl 18931 | . . . . 5 ⊢ (𝑥 ∈ (𝑍‘𝐴) → (𝐺 ∈ V ∧ 𝐴 ⊆ (Base‘𝐺))) |
15 | 14 | simprd 496 | . . . 4 ⊢ (𝑥 ∈ (𝑍‘𝐴) → 𝐴 ⊆ (Base‘𝐺)) |
16 | 12, 2, 13 | elcntz 18926 | . . . 4 ⊢ (𝐴 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑍‘𝐴) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
17 | 15, 16 | biadanii 819 | . . 3 ⊢ (𝑥 ∈ (𝑍‘𝐴) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
18 | 3, 12 | oppgbas 18954 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝑂) |
19 | eqid 2740 | . . . . . 6 ⊢ (Cntz‘𝑂) = (Cntz‘𝑂) | |
20 | 18, 19 | cntzrcl 18931 | . . . . 5 ⊢ (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) → (𝑂 ∈ V ∧ 𝐴 ⊆ (Base‘𝐺))) |
21 | 20 | simprd 496 | . . . 4 ⊢ (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) → 𝐴 ⊆ (Base‘𝐺)) |
22 | 18, 4, 19 | elcntz 18926 | . . . 4 ⊢ (𝐴 ⊆ (Base‘𝐺) → (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)))) |
23 | 21, 22 | biadanii 819 | . . 3 ⊢ (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)))) |
24 | 11, 17, 23 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ (𝑍‘𝐴) ↔ 𝑥 ∈ ((Cntz‘𝑂)‘𝐴)) |
25 | 24 | eqriv 2737 | 1 ⊢ (𝑍‘𝐴) = ((Cntz‘𝑂)‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 Vcvv 3431 ⊆ wss 3892 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 +gcplusg 16960 Cntzccntz 18919 oppgcoppg 18947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-tpos 8033 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-plusg 16973 df-cntz 18921 df-oppg 18948 |
This theorem is referenced by: oppgcntr 18970 gsumzoppg 19543 gsumzinv 19544 |
Copyright terms: Public domain | W3C validator |