MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgcntz Structured version   Visualization version   GIF version

Theorem oppgcntz 18492
Description: A centralizer in a group is the same as the centralizer in the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
oppggic.o 𝑂 = (oppg𝐺)
oppgcntz.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
oppgcntz (𝑍𝐴) = ((Cntz‘𝑂)‘𝐴)

Proof of Theorem oppgcntz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqcom 2828 . . . . . . 7 ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑦(+g𝐺)𝑥) = (𝑥(+g𝐺)𝑦))
2 eqid 2821 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
3 oppggic.o . . . . . . . . 9 𝑂 = (oppg𝐺)
4 eqid 2821 . . . . . . . . 9 (+g𝑂) = (+g𝑂)
52, 3, 4oppgplus 18477 . . . . . . . 8 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝐺)𝑥)
62, 3, 4oppgplus 18477 . . . . . . . 8 (𝑦(+g𝑂)𝑥) = (𝑥(+g𝐺)𝑦)
75, 6eqeq12i 2836 . . . . . . 7 ((𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥) ↔ (𝑦(+g𝐺)𝑥) = (𝑥(+g𝐺)𝑦))
81, 7bitr4i 280 . . . . . 6 ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥))
98ralbii 3165 . . . . 5 (∀𝑦𝐴 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∀𝑦𝐴 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥))
109anbi2i 624 . . . 4 ((𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥)))
1110anbi2i 624 . . 3 ((𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥))))
12 eqid 2821 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
13 oppgcntz.z . . . . . 6 𝑍 = (Cntz‘𝐺)
1412, 13cntzrcl 18457 . . . . 5 (𝑥 ∈ (𝑍𝐴) → (𝐺 ∈ V ∧ 𝐴 ⊆ (Base‘𝐺)))
1514simprd 498 . . . 4 (𝑥 ∈ (𝑍𝐴) → 𝐴 ⊆ (Base‘𝐺))
1612, 2, 13elcntz 18452 . . . 4 (𝐴 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑍𝐴) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
1715, 16biadanii 820 . . 3 (𝑥 ∈ (𝑍𝐴) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
183, 12oppgbas 18479 . . . . . 6 (Base‘𝐺) = (Base‘𝑂)
19 eqid 2821 . . . . . 6 (Cntz‘𝑂) = (Cntz‘𝑂)
2018, 19cntzrcl 18457 . . . . 5 (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) → (𝑂 ∈ V ∧ 𝐴 ⊆ (Base‘𝐺)))
2120simprd 498 . . . 4 (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) → 𝐴 ⊆ (Base‘𝐺))
2218, 4, 19elcntz 18452 . . . 4 (𝐴 ⊆ (Base‘𝐺) → (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥))))
2321, 22biadanii 820 . . 3 (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥))))
2411, 17, 233bitr4i 305 . 2 (𝑥 ∈ (𝑍𝐴) ↔ 𝑥 ∈ ((Cntz‘𝑂)‘𝐴))
2524eqriv 2818 1 (𝑍𝐴) = ((Cntz‘𝑂)‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  wss 3936  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  Cntzccntz 18445  oppgcoppg 18473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-cntz 18447  df-oppg 18474
This theorem is referenced by:  oppgcntr  18493  gsumzoppg  19064  gsumzinv  19065
  Copyright terms: Public domain W3C validator