Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppgcntz | Structured version Visualization version GIF version |
Description: A centralizer in a group is the same as the centralizer in the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
oppggic.o | ⊢ 𝑂 = (oppg‘𝐺) |
oppgcntz.z | ⊢ 𝑍 = (Cntz‘𝐺) |
Ref | Expression |
---|---|
oppgcntz | ⊢ (𝑍‘𝐴) = ((Cntz‘𝑂)‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2744 | . . . . . . 7 ⊢ ((𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ (𝑦(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)𝑦)) | |
2 | eqid 2737 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | oppggic.o | . . . . . . . . 9 ⊢ 𝑂 = (oppg‘𝐺) | |
4 | eqid 2737 | . . . . . . . . 9 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
5 | 2, 3, 4 | oppgplus 18741 | . . . . . . . 8 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝐺)𝑥) |
6 | 2, 3, 4 | oppgplus 18741 | . . . . . . . 8 ⊢ (𝑦(+g‘𝑂)𝑥) = (𝑥(+g‘𝐺)𝑦) |
7 | 5, 6 | eqeq12i 2755 | . . . . . . 7 ⊢ ((𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥) ↔ (𝑦(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)𝑦)) |
8 | 1, 7 | bitr4i 281 | . . . . . 6 ⊢ ((𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)) |
9 | 8 | ralbii 3088 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)) |
10 | 9 | anbi2i 626 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥))) |
11 | 10 | anbi2i 626 | . . 3 ⊢ ((𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)))) |
12 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
13 | oppgcntz.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝐺) | |
14 | 12, 13 | cntzrcl 18721 | . . . . 5 ⊢ (𝑥 ∈ (𝑍‘𝐴) → (𝐺 ∈ V ∧ 𝐴 ⊆ (Base‘𝐺))) |
15 | 14 | simprd 499 | . . . 4 ⊢ (𝑥 ∈ (𝑍‘𝐴) → 𝐴 ⊆ (Base‘𝐺)) |
16 | 12, 2, 13 | elcntz 18716 | . . . 4 ⊢ (𝐴 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑍‘𝐴) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
17 | 15, 16 | biadanii 822 | . . 3 ⊢ (𝑥 ∈ (𝑍‘𝐴) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
18 | 3, 12 | oppgbas 18743 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝑂) |
19 | eqid 2737 | . . . . . 6 ⊢ (Cntz‘𝑂) = (Cntz‘𝑂) | |
20 | 18, 19 | cntzrcl 18721 | . . . . 5 ⊢ (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) → (𝑂 ∈ V ∧ 𝐴 ⊆ (Base‘𝐺))) |
21 | 20 | simprd 499 | . . . 4 ⊢ (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) → 𝐴 ⊆ (Base‘𝐺)) |
22 | 18, 4, 19 | elcntz 18716 | . . . 4 ⊢ (𝐴 ⊆ (Base‘𝐺) → (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)))) |
23 | 21, 22 | biadanii 822 | . . 3 ⊢ (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)))) |
24 | 11, 17, 23 | 3bitr4i 306 | . 2 ⊢ (𝑥 ∈ (𝑍‘𝐴) ↔ 𝑥 ∈ ((Cntz‘𝑂)‘𝐴)) |
25 | 24 | eqriv 2734 | 1 ⊢ (𝑍‘𝐴) = ((Cntz‘𝑂)‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 Vcvv 3408 ⊆ wss 3866 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 +gcplusg 16802 Cntzccntz 18709 oppgcoppg 18737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-tpos 7968 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-cntz 18711 df-oppg 18738 |
This theorem is referenced by: oppgcntr 18757 gsumzoppg 19329 gsumzinv 19330 |
Copyright terms: Public domain | W3C validator |