MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgcntz Structured version   Visualization version   GIF version

Theorem oppgcntz 19243
Description: A centralizer in a group is the same as the centralizer in the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
oppggic.o 𝑂 = (oppg𝐺)
oppgcntz.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
oppgcntz (𝑍𝐴) = ((Cntz‘𝑂)‘𝐴)

Proof of Theorem oppgcntz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqcom 2736 . . . . . . 7 ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑦(+g𝐺)𝑥) = (𝑥(+g𝐺)𝑦))
2 eqid 2729 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
3 oppggic.o . . . . . . . . 9 𝑂 = (oppg𝐺)
4 eqid 2729 . . . . . . . . 9 (+g𝑂) = (+g𝑂)
52, 3, 4oppgplus 19228 . . . . . . . 8 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝐺)𝑥)
62, 3, 4oppgplus 19228 . . . . . . . 8 (𝑦(+g𝑂)𝑥) = (𝑥(+g𝐺)𝑦)
75, 6eqeq12i 2747 . . . . . . 7 ((𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥) ↔ (𝑦(+g𝐺)𝑥) = (𝑥(+g𝐺)𝑦))
81, 7bitr4i 278 . . . . . 6 ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥))
98ralbii 3075 . . . . 5 (∀𝑦𝐴 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∀𝑦𝐴 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥))
109anbi2i 623 . . . 4 ((𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥)))
1110anbi2i 623 . . 3 ((𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥))))
12 eqid 2729 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
13 oppgcntz.z . . . . . 6 𝑍 = (Cntz‘𝐺)
1412, 13cntzrcl 19206 . . . . 5 (𝑥 ∈ (𝑍𝐴) → (𝐺 ∈ V ∧ 𝐴 ⊆ (Base‘𝐺)))
1514simprd 495 . . . 4 (𝑥 ∈ (𝑍𝐴) → 𝐴 ⊆ (Base‘𝐺))
1612, 2, 13elcntz 19201 . . . 4 (𝐴 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑍𝐴) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
1715, 16biadanii 821 . . 3 (𝑥 ∈ (𝑍𝐴) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
183, 12oppgbas 19230 . . . . . 6 (Base‘𝐺) = (Base‘𝑂)
19 eqid 2729 . . . . . 6 (Cntz‘𝑂) = (Cntz‘𝑂)
2018, 19cntzrcl 19206 . . . . 5 (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) → (𝑂 ∈ V ∧ 𝐴 ⊆ (Base‘𝐺)))
2120simprd 495 . . . 4 (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) → 𝐴 ⊆ (Base‘𝐺))
2218, 4, 19elcntz 19201 . . . 4 (𝐴 ⊆ (Base‘𝐺) → (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥))))
2321, 22biadanii 821 . . 3 (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥))))
2411, 17, 233bitr4i 303 . 2 (𝑥 ∈ (𝑍𝐴) ↔ 𝑥 ∈ ((Cntz‘𝑂)‘𝐴))
2524eqriv 2726 1 (𝑍𝐴) = ((Cntz‘𝑂)‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  wss 3903  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  Cntzccntz 19194  oppgcoppg 19224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-cntz 19196  df-oppg 19225
This theorem is referenced by:  oppgcntr  19244  gsumzoppg  19823  gsumzinv  19824
  Copyright terms: Public domain W3C validator