Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppgcntz | Structured version Visualization version GIF version |
Description: A centralizer in a group is the same as the centralizer in the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
oppggic.o | ⊢ 𝑂 = (oppg‘𝐺) |
oppgcntz.z | ⊢ 𝑍 = (Cntz‘𝐺) |
Ref | Expression |
---|---|
oppgcntz | ⊢ (𝑍‘𝐴) = ((Cntz‘𝑂)‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2745 | . . . . . . 7 ⊢ ((𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ (𝑦(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)𝑦)) | |
2 | eqid 2738 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | oppggic.o | . . . . . . . . 9 ⊢ 𝑂 = (oppg‘𝐺) | |
4 | eqid 2738 | . . . . . . . . 9 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
5 | 2, 3, 4 | oppgplus 18868 | . . . . . . . 8 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝐺)𝑥) |
6 | 2, 3, 4 | oppgplus 18868 | . . . . . . . 8 ⊢ (𝑦(+g‘𝑂)𝑥) = (𝑥(+g‘𝐺)𝑦) |
7 | 5, 6 | eqeq12i 2756 | . . . . . . 7 ⊢ ((𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥) ↔ (𝑦(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)𝑦)) |
8 | 1, 7 | bitr4i 277 | . . . . . 6 ⊢ ((𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)) |
9 | 8 | ralbii 3090 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)) |
10 | 9 | anbi2i 622 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥))) |
11 | 10 | anbi2i 622 | . . 3 ⊢ ((𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)))) |
12 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
13 | oppgcntz.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝐺) | |
14 | 12, 13 | cntzrcl 18848 | . . . . 5 ⊢ (𝑥 ∈ (𝑍‘𝐴) → (𝐺 ∈ V ∧ 𝐴 ⊆ (Base‘𝐺))) |
15 | 14 | simprd 495 | . . . 4 ⊢ (𝑥 ∈ (𝑍‘𝐴) → 𝐴 ⊆ (Base‘𝐺)) |
16 | 12, 2, 13 | elcntz 18843 | . . . 4 ⊢ (𝐴 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑍‘𝐴) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
17 | 15, 16 | biadanii 818 | . . 3 ⊢ (𝑥 ∈ (𝑍‘𝐴) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
18 | 3, 12 | oppgbas 18871 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝑂) |
19 | eqid 2738 | . . . . . 6 ⊢ (Cntz‘𝑂) = (Cntz‘𝑂) | |
20 | 18, 19 | cntzrcl 18848 | . . . . 5 ⊢ (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) → (𝑂 ∈ V ∧ 𝐴 ⊆ (Base‘𝐺))) |
21 | 20 | simprd 495 | . . . 4 ⊢ (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) → 𝐴 ⊆ (Base‘𝐺)) |
22 | 18, 4, 19 | elcntz 18843 | . . . 4 ⊢ (𝐴 ⊆ (Base‘𝐺) → (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)))) |
23 | 21, 22 | biadanii 818 | . . 3 ⊢ (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)))) |
24 | 11, 17, 23 | 3bitr4i 302 | . 2 ⊢ (𝑥 ∈ (𝑍‘𝐴) ↔ 𝑥 ∈ ((Cntz‘𝑂)‘𝐴)) |
25 | 24 | eqriv 2735 | 1 ⊢ (𝑍‘𝐴) = ((Cntz‘𝑂)‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Cntzccntz 18836 oppgcoppg 18864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-cntz 18838 df-oppg 18865 |
This theorem is referenced by: oppgcntr 18887 gsumzoppg 19460 gsumzinv 19461 |
Copyright terms: Public domain | W3C validator |