Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppgcntz | Structured version Visualization version GIF version |
Description: A centralizer in a group is the same as the centralizer in the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
oppggic.o | ⊢ 𝑂 = (oppg‘𝐺) |
oppgcntz.z | ⊢ 𝑍 = (Cntz‘𝐺) |
Ref | Expression |
---|---|
oppgcntz | ⊢ (𝑍‘𝐴) = ((Cntz‘𝑂)‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2745 | . . . . . . 7 ⊢ ((𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ (𝑦(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)𝑦)) | |
2 | eqid 2738 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | oppggic.o | . . . . . . . . 9 ⊢ 𝑂 = (oppg‘𝐺) | |
4 | eqid 2738 | . . . . . . . . 9 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
5 | 2, 3, 4 | oppgplus 18953 | . . . . . . . 8 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝐺)𝑥) |
6 | 2, 3, 4 | oppgplus 18953 | . . . . . . . 8 ⊢ (𝑦(+g‘𝑂)𝑥) = (𝑥(+g‘𝐺)𝑦) |
7 | 5, 6 | eqeq12i 2756 | . . . . . . 7 ⊢ ((𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥) ↔ (𝑦(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)𝑦)) |
8 | 1, 7 | bitr4i 277 | . . . . . 6 ⊢ ((𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)) |
9 | 8 | ralbii 3092 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)) |
10 | 9 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥))) |
11 | 10 | anbi2i 623 | . . 3 ⊢ ((𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)))) |
12 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
13 | oppgcntz.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝐺) | |
14 | 12, 13 | cntzrcl 18933 | . . . . 5 ⊢ (𝑥 ∈ (𝑍‘𝐴) → (𝐺 ∈ V ∧ 𝐴 ⊆ (Base‘𝐺))) |
15 | 14 | simprd 496 | . . . 4 ⊢ (𝑥 ∈ (𝑍‘𝐴) → 𝐴 ⊆ (Base‘𝐺)) |
16 | 12, 2, 13 | elcntz 18928 | . . . 4 ⊢ (𝐴 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑍‘𝐴) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
17 | 15, 16 | biadanii 819 | . . 3 ⊢ (𝑥 ∈ (𝑍‘𝐴) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
18 | 3, 12 | oppgbas 18956 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝑂) |
19 | eqid 2738 | . . . . . 6 ⊢ (Cntz‘𝑂) = (Cntz‘𝑂) | |
20 | 18, 19 | cntzrcl 18933 | . . . . 5 ⊢ (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) → (𝑂 ∈ V ∧ 𝐴 ⊆ (Base‘𝐺))) |
21 | 20 | simprd 496 | . . . 4 ⊢ (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) → 𝐴 ⊆ (Base‘𝐺)) |
22 | 18, 4, 19 | elcntz 18928 | . . . 4 ⊢ (𝐴 ⊆ (Base‘𝐺) → (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)))) |
23 | 21, 22 | biadanii 819 | . . 3 ⊢ (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝐴 (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑂)𝑥)))) |
24 | 11, 17, 23 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ (𝑍‘𝐴) ↔ 𝑥 ∈ ((Cntz‘𝑂)‘𝐴)) |
25 | 24 | eqriv 2735 | 1 ⊢ (𝑍‘𝐴) = ((Cntz‘𝑂)‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Cntzccntz 18921 oppgcoppg 18949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-cntz 18923 df-oppg 18950 |
This theorem is referenced by: oppgcntr 18972 gsumzoppg 19545 gsumzinv 19546 |
Copyright terms: Public domain | W3C validator |