![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isrhm | Structured version Visualization version GIF version |
Description: A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
isrhm.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
isrhm.n | ⊢ 𝑁 = (mulGrp‘𝑆) |
Ref | Expression |
---|---|
isrhm | ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrhm2 20245 | . . 3 ⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) | |
2 | 1 | elmpocl 7644 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑅 ∈ Ring ∧ 𝑆 ∈ Ring)) |
3 | oveq12 7414 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 GrpHom 𝑠) = (𝑅 GrpHom 𝑆)) | |
4 | fveq2 6888 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
5 | fveq2 6888 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (mulGrp‘𝑠) = (mulGrp‘𝑆)) | |
6 | 4, 5 | oveqan12d 7424 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) = ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
7 | 3, 6 | ineq12d 4212 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
8 | ovex 7438 | . . . . . 6 ⊢ (𝑅 GrpHom 𝑆) ∈ V | |
9 | 8 | inex1 5316 | . . . . 5 ⊢ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ∈ V |
10 | 7, 1, 9 | ovmpoa 7559 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝑅 RingHom 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
11 | 10 | eleq2d 2819 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ 𝐹 ∈ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
12 | elin 3963 | . . . 4 ⊢ (𝐹 ∈ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) | |
13 | isrhm.m | . . . . . . . 8 ⊢ 𝑀 = (mulGrp‘𝑅) | |
14 | isrhm.n | . . . . . . . 8 ⊢ 𝑁 = (mulGrp‘𝑆) | |
15 | 13, 14 | oveq12i 7417 | . . . . . . 7 ⊢ (𝑀 MndHom 𝑁) = ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) |
16 | 15 | eqcomi 2741 | . . . . . 6 ⊢ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) = (𝑀 MndHom 𝑁) |
17 | 16 | eleq2i 2825 | . . . . 5 ⊢ (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ↔ 𝐹 ∈ (𝑀 MndHom 𝑁)) |
18 | 17 | anbi2i 623 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁))) |
19 | 12, 18 | bitri 274 | . . 3 ⊢ (𝐹 ∈ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁))) |
20 | 11, 19 | bitrdi 286 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))) |
21 | 2, 20 | biadanii 820 | 1 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∩ cin 3946 ‘cfv 6540 (class class class)co 7405 MndHom cmhm 18665 GrpHom cghm 19083 mulGrpcmgp 19981 Ringcrg 20049 RingHom crh 20240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-0g 17383 df-mhm 18667 df-ghm 19084 df-mgp 19982 df-ur 19999 df-ring 20051 df-rnghom 20243 |
This theorem is referenced by: rhmmhm 20250 rhmghm 20254 isrhm2d 20257 idrhm 20260 rhmf1o 20261 rhmco 20268 pwsco1rhm 20269 pwsco2rhm 20270 brric2 20277 resrhm 20385 resrhm2b 20386 pwsdiagrhm 20391 rhmpropd 20393 mat1rhm 21978 scmatrhm 22028 mat2pmatrhm 22227 m2cpmrhm 22239 pm2mprhm 22314 c0rhm 46696 rhmisrnghm 46707 |
Copyright terms: Public domain | W3C validator |