|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > isrhm | Structured version Visualization version GIF version | ||
| Description: A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| isrhm.m | ⊢ 𝑀 = (mulGrp‘𝑅) | 
| isrhm.n | ⊢ 𝑁 = (mulGrp‘𝑆) | 
| Ref | Expression | 
|---|---|
| isrhm | ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfrhm2 20475 | . . 3 ⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) | |
| 2 | 1 | elmpocl 7675 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑅 ∈ Ring ∧ 𝑆 ∈ Ring)) | 
| 3 | oveq12 7441 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 GrpHom 𝑠) = (𝑅 GrpHom 𝑆)) | |
| 4 | fveq2 6905 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
| 5 | fveq2 6905 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (mulGrp‘𝑠) = (mulGrp‘𝑆)) | |
| 6 | 4, 5 | oveqan12d 7451 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) = ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) | 
| 7 | 3, 6 | ineq12d 4220 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) | 
| 8 | ovex 7465 | . . . . . 6 ⊢ (𝑅 GrpHom 𝑆) ∈ V | |
| 9 | 8 | inex1 5316 | . . . . 5 ⊢ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ∈ V | 
| 10 | 7, 1, 9 | ovmpoa 7589 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝑅 RingHom 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) | 
| 11 | 10 | eleq2d 2826 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ 𝐹 ∈ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) | 
| 12 | elin 3966 | . . . 4 ⊢ (𝐹 ∈ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) | |
| 13 | isrhm.m | . . . . . . . 8 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 14 | isrhm.n | . . . . . . . 8 ⊢ 𝑁 = (mulGrp‘𝑆) | |
| 15 | 13, 14 | oveq12i 7444 | . . . . . . 7 ⊢ (𝑀 MndHom 𝑁) = ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) | 
| 16 | 15 | eqcomi 2745 | . . . . . 6 ⊢ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) = (𝑀 MndHom 𝑁) | 
| 17 | 16 | eleq2i 2832 | . . . . 5 ⊢ (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ↔ 𝐹 ∈ (𝑀 MndHom 𝑁)) | 
| 18 | 17 | anbi2i 623 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁))) | 
| 19 | 12, 18 | bitri 275 | . . 3 ⊢ (𝐹 ∈ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁))) | 
| 20 | 11, 19 | bitrdi 287 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))) | 
| 21 | 2, 20 | biadanii 821 | 1 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∩ cin 3949 ‘cfv 6560 (class class class)co 7432 MndHom cmhm 18795 GrpHom cghm 19231 mulGrpcmgp 20138 Ringcrg 20231 RingHom crh 20470 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-plusg 17311 df-0g 17487 df-mhm 18797 df-ghm 19232 df-mgp 20139 df-ur 20180 df-ring 20233 df-rhm 20473 | 
| This theorem is referenced by: rhmmhm 20480 rhmisrnghm 20481 rhmghm 20485 isrhm2d 20488 idrhm 20491 rhmf1o 20492 rhmco 20502 pwsco1rhm 20503 pwsco2rhm 20504 brric2 20507 c0rhm 20535 resrhm 20602 resrhm2b 20603 pwsdiagrhm 20608 rhmpropd 20610 mat1rhm 22492 scmatrhm 22542 mat2pmatrhm 22741 m2cpmrhm 22753 pm2mprhm 22828 zringfrac 33583 | 
| Copyright terms: Public domain | W3C validator |