MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrhm Structured version   Visualization version   GIF version

Theorem isrhm 19472
Description: A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypotheses
Ref Expression
isrhm.m 𝑀 = (mulGrp‘𝑅)
isrhm.n 𝑁 = (mulGrp‘𝑆)
Assertion
Ref Expression
isrhm (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁))))

Proof of Theorem isrhm
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrhm2 19468 . . 3 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
21elmpocl 7371 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑅 ∈ Ring ∧ 𝑆 ∈ Ring))
3 oveq12 7148 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 GrpHom 𝑠) = (𝑅 GrpHom 𝑆))
4 fveq2 6649 . . . . . . 7 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
5 fveq2 6649 . . . . . . 7 (𝑠 = 𝑆 → (mulGrp‘𝑠) = (mulGrp‘𝑆))
64, 5oveqan12d 7158 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) = ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
73, 6ineq12d 4143 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))
8 ovex 7172 . . . . . 6 (𝑅 GrpHom 𝑆) ∈ V
98inex1 5188 . . . . 5 ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ∈ V
107, 1, 9ovmpoa 7288 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝑅 RingHom 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))
1110eleq2d 2878 . . 3 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ 𝐹 ∈ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))))
12 elin 3900 . . . 4 (𝐹 ∈ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))
13 isrhm.m . . . . . . . 8 𝑀 = (mulGrp‘𝑅)
14 isrhm.n . . . . . . . 8 𝑁 = (mulGrp‘𝑆)
1513, 14oveq12i 7151 . . . . . . 7 (𝑀 MndHom 𝑁) = ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))
1615eqcomi 2810 . . . . . 6 ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) = (𝑀 MndHom 𝑁)
1716eleq2i 2884 . . . . 5 (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ↔ 𝐹 ∈ (𝑀 MndHom 𝑁))
1817anbi2i 625 . . . 4 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))
1912, 18bitri 278 . . 3 (𝐹 ∈ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))
2011, 19syl6bb 290 . 2 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁))))
212, 20biadanii 821 1 (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2112  cin 3883  cfv 6328  (class class class)co 7139   MndHom cmhm 17949   GrpHom cghm 18350  mulGrpcmgp 19235  Ringcrg 19293   RingHom crh 19463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-plusg 16573  df-0g 16710  df-mhm 17951  df-ghm 18351  df-mgp 19236  df-ur 19248  df-ring 19295  df-rnghom 19466
This theorem is referenced by:  rhmmhm  19473  rhmghm  19476  isrhm2d  19479  idrhm  19482  rhmf1o  19483  rhmco  19488  pwsco1rhm  19489  pwsco2rhm  19490  brric2  19496  resrhm  19560  pwsdiagrhm  19565  rhmpropd  19567  mat1rhm  21093  scmatrhm  21143  mat2pmatrhm  21342  m2cpmrhm  21354  pm2mprhm  21429  c0rhm  44523  rhmisrnghm  44531
  Copyright terms: Public domain W3C validator