MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcgreu Structured version   Visualization version   GIF version

Theorem hlcgreu 28641
Description: The point constructed in hlcgrex 28639 is unique. Theorem 6.11 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
hlcgrex.m = (dist‘𝐺)
hlcgrex.1 (𝜑𝐷𝐴)
hlcgrex.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
hlcgreu (𝜑 → ∃!𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,𝐼   𝑥,𝑃   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem hlcgreu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ishlg.p . . 3 𝑃 = (Base‘𝐺)
2 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
3 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
4 ishlg.a . . 3 (𝜑𝐴𝑃)
5 ishlg.b . . 3 (𝜑𝐵𝑃)
6 ishlg.c . . 3 (𝜑𝐶𝑃)
7 hlln.1 . . 3 (𝜑𝐺 ∈ TarskiG)
8 hltr.d . . 3 (𝜑𝐷𝑃)
9 hlcgrex.m . . 3 = (dist‘𝐺)
10 hlcgrex.1 . . 3 (𝜑𝐷𝐴)
11 hlcgrex.2 . . 3 (𝜑𝐵𝐶)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hlcgrex 28639 . 2 (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
134ad3antrrr 730 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐴𝑃)
145ad3antrrr 730 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐵𝑃)
156ad3antrrr 730 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐶𝑃)
167ad3antrrr 730 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐺 ∈ TarskiG)
178ad3antrrr 730 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐷𝑃)
1810ad3antrrr 730 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐷𝐴)
1911ad3antrrr 730 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐵𝐶)
20 simpllr 776 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑥𝑃)
21 simplr 769 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑦𝑃)
22 simprll 779 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑥(𝐾𝐴)𝐷)
23 simprrl 781 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑦(𝐾𝐴)𝐷)
24 simprlr 780 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → (𝐴 𝑥) = (𝐵 𝐶))
25 simprrr 782 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → (𝐴 𝑦) = (𝐵 𝐶))
261, 2, 3, 13, 14, 15, 16, 17, 9, 18, 19, 20, 21, 22, 23, 24, 25hlcgreulem 28640 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑥 = 𝑦)
2726ex 412 . . . 4 (((𝜑𝑥𝑃) ∧ 𝑦𝑃) → (((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))) → 𝑥 = 𝑦))
2827ralrimiva 3144 . . 3 ((𝜑𝑥𝑃) → ∀𝑦𝑃 (((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))) → 𝑥 = 𝑦))
2928ralrimiva 3144 . 2 (𝜑 → ∀𝑥𝑃𝑦𝑃 (((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))) → 𝑥 = 𝑦))
30 breq1 5151 . . . 4 (𝑥 = 𝑦 → (𝑥(𝐾𝐴)𝐷𝑦(𝐾𝐴)𝐷))
31 oveq2 7439 . . . . 5 (𝑥 = 𝑦 → (𝐴 𝑥) = (𝐴 𝑦))
3231eqeq1d 2737 . . . 4 (𝑥 = 𝑦 → ((𝐴 𝑥) = (𝐵 𝐶) ↔ (𝐴 𝑦) = (𝐵 𝐶)))
3330, 32anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ↔ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))))
3433reu4 3740 . 2 (∃!𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ↔ (∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ ∀𝑥𝑃𝑦𝑃 (((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))) → 𝑥 = 𝑦)))
3512, 29, 34sylanbrc 583 1 (𝜑 → ∃!𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  ∃!wreu 3376   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  distcds 17307  TarskiGcstrkg 28450  Itvcitv 28456  hlGchlg 28623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-trkgc 28471  df-trkgb 28472  df-trkgcb 28473  df-trkg 28476  df-cgrg 28534  df-hlg 28624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator