MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcgreu Structured version   Visualization version   GIF version

Theorem hlcgreu 26412
Description: The point constructed in hlcgrex 26410 is unique. Theorem 6.11 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
hlcgrex.m = (dist‘𝐺)
hlcgrex.1 (𝜑𝐷𝐴)
hlcgrex.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
hlcgreu (𝜑 → ∃!𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,𝐼   𝑥,𝑃   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem hlcgreu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ishlg.p . . 3 𝑃 = (Base‘𝐺)
2 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
3 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
4 ishlg.a . . 3 (𝜑𝐴𝑃)
5 ishlg.b . . 3 (𝜑𝐵𝑃)
6 ishlg.c . . 3 (𝜑𝐶𝑃)
7 hlln.1 . . 3 (𝜑𝐺 ∈ TarskiG)
8 hltr.d . . 3 (𝜑𝐷𝑃)
9 hlcgrex.m . . 3 = (dist‘𝐺)
10 hlcgrex.1 . . 3 (𝜑𝐷𝐴)
11 hlcgrex.2 . . 3 (𝜑𝐵𝐶)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hlcgrex 26410 . 2 (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
134ad3antrrr 729 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐴𝑃)
145ad3antrrr 729 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐵𝑃)
156ad3antrrr 729 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐶𝑃)
167ad3antrrr 729 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐺 ∈ TarskiG)
178ad3antrrr 729 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐷𝑃)
1810ad3antrrr 729 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐷𝐴)
1911ad3antrrr 729 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐵𝐶)
20 simpllr 775 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑥𝑃)
21 simplr 768 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑦𝑃)
22 simprll 778 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑥(𝐾𝐴)𝐷)
23 simprrl 780 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑦(𝐾𝐴)𝐷)
24 simprlr 779 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → (𝐴 𝑥) = (𝐵 𝐶))
25 simprrr 781 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → (𝐴 𝑦) = (𝐵 𝐶))
261, 2, 3, 13, 14, 15, 16, 17, 9, 18, 19, 20, 21, 22, 23, 24, 25hlcgreulem 26411 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑥 = 𝑦)
2726ex 416 . . . 4 (((𝜑𝑥𝑃) ∧ 𝑦𝑃) → (((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))) → 𝑥 = 𝑦))
2827ralrimiva 3149 . . 3 ((𝜑𝑥𝑃) → ∀𝑦𝑃 (((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))) → 𝑥 = 𝑦))
2928ralrimiva 3149 . 2 (𝜑 → ∀𝑥𝑃𝑦𝑃 (((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))) → 𝑥 = 𝑦))
30 breq1 5033 . . . 4 (𝑥 = 𝑦 → (𝑥(𝐾𝐴)𝐷𝑦(𝐾𝐴)𝐷))
31 oveq2 7143 . . . . 5 (𝑥 = 𝑦 → (𝐴 𝑥) = (𝐴 𝑦))
3231eqeq1d 2800 . . . 4 (𝑥 = 𝑦 → ((𝐴 𝑥) = (𝐵 𝐶) ↔ (𝐴 𝑦) = (𝐵 𝐶)))
3330, 32anbi12d 633 . . 3 (𝑥 = 𝑦 → ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ↔ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))))
3433reu4 3670 . 2 (∃!𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ↔ (∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ ∀𝑥𝑃𝑦𝑃 (((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))) → 𝑥 = 𝑦)))
3512, 29, 34sylanbrc 586 1 (𝜑 → ∃!𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  ∃!wreu 3108   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  Itvcitv 26230  hlGchlg 26394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-trkgc 26242  df-trkgb 26243  df-trkgcb 26244  df-trkg 26247  df-cgrg 26305  df-hlg 26395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator