Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcgreu Structured version   Visualization version   GIF version

Theorem hlcgreu 26391
 Description: The point constructed in hlcgrex 26389 is unique. Theorem 6.11 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
hlcgrex.m = (dist‘𝐺)
hlcgrex.1 (𝜑𝐷𝐴)
hlcgrex.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
hlcgreu (𝜑 → ∃!𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,𝐼   𝑥,𝑃   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem hlcgreu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ishlg.p . . 3 𝑃 = (Base‘𝐺)
2 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
3 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
4 ishlg.a . . 3 (𝜑𝐴𝑃)
5 ishlg.b . . 3 (𝜑𝐵𝑃)
6 ishlg.c . . 3 (𝜑𝐶𝑃)
7 hlln.1 . . 3 (𝜑𝐺 ∈ TarskiG)
8 hltr.d . . 3 (𝜑𝐷𝑃)
9 hlcgrex.m . . 3 = (dist‘𝐺)
10 hlcgrex.1 . . 3 (𝜑𝐷𝐴)
11 hlcgrex.2 . . 3 (𝜑𝐵𝐶)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hlcgrex 26389 . 2 (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
134ad3antrrr 729 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐴𝑃)
145ad3antrrr 729 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐵𝑃)
156ad3antrrr 729 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐶𝑃)
167ad3antrrr 729 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐺 ∈ TarskiG)
178ad3antrrr 729 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐷𝑃)
1810ad3antrrr 729 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐷𝐴)
1911ad3antrrr 729 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐵𝐶)
20 simpllr 775 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑥𝑃)
21 simplr 768 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑦𝑃)
22 simprll 778 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑥(𝐾𝐴)𝐷)
23 simprrl 780 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑦(𝐾𝐴)𝐷)
24 simprlr 779 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → (𝐴 𝑥) = (𝐵 𝐶))
25 simprrr 781 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → (𝐴 𝑦) = (𝐵 𝐶))
261, 2, 3, 13, 14, 15, 16, 17, 9, 18, 19, 20, 21, 22, 23, 24, 25hlcgreulem 26390 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑥 = 𝑦)
2726ex 416 . . . 4 (((𝜑𝑥𝑃) ∧ 𝑦𝑃) → (((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))) → 𝑥 = 𝑦))
2827ralrimiva 3170 . . 3 ((𝜑𝑥𝑃) → ∀𝑦𝑃 (((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))) → 𝑥 = 𝑦))
2928ralrimiva 3170 . 2 (𝜑 → ∀𝑥𝑃𝑦𝑃 (((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))) → 𝑥 = 𝑦))
30 breq1 5042 . . . 4 (𝑥 = 𝑦 → (𝑥(𝐾𝐴)𝐷𝑦(𝐾𝐴)𝐷))
31 oveq2 7138 . . . . 5 (𝑥 = 𝑦 → (𝐴 𝑥) = (𝐴 𝑦))
3231eqeq1d 2823 . . . 4 (𝑥 = 𝑦 → ((𝐴 𝑥) = (𝐵 𝐶) ↔ (𝐴 𝑦) = (𝐵 𝐶)))
3330, 32anbi12d 633 . . 3 (𝑥 = 𝑦 → ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ↔ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))))
3433reu4 3699 . 2 (∃!𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ↔ (∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ ∀𝑥𝑃𝑦𝑃 (((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))) → 𝑥 = 𝑦)))
3512, 29, 34sylanbrc 586 1 (𝜑 → ∃!𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115   ≠ wne 3007  ∀wral 3126  ∃wrex 3127  ∃!wreu 3128   class class class wbr 5039  ‘cfv 6328  (class class class)co 7130  Basecbs 16462  distcds 16553  TarskiGcstrkg 26203  Itvcitv 26209  hlGchlg 26373 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-pm 8384  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-dju 9306  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-n0 11876  df-xnn0 11946  df-z 11960  df-uz 12222  df-fz 12876  df-fzo 13017  df-hash 13675  df-word 13846  df-concat 13902  df-s1 13929  df-s2 14189  df-s3 14190  df-trkgc 26221  df-trkgb 26222  df-trkgcb 26223  df-trkg 26226  df-cgrg 26284  df-hlg 26374 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator