Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mirln2 | Structured version Visualization version GIF version |
Description: If a point and its mirror point are both on the same line, so is the center of the point inversion. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirln2.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirln2.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
mirln2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirln2.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
mirln2.2 | ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝐷) |
Ref | Expression |
---|---|
mirln2 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . . . 5 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | mirln2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | mirln2.m | . . . . 5 ⊢ 𝑀 = (𝑆‘𝐴) | |
9 | mirln2.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
10 | mirln2.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
11 | 1, 4, 3, 6, 9, 10 | tglnpt 26669 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | mirinv 26786 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) |
13 | 12 | biimpa 480 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 = 𝐵) |
14 | 10 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐵 ∈ 𝐷) |
15 | 13, 14 | eqeltrd 2840 | . 2 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ 𝐷) |
16 | 6 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐺 ∈ TarskiG) |
17 | mirln2.2 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝐷) | |
18 | 1, 4, 3, 6, 9, 17 | tglnpt 26669 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
19 | 18 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → (𝑀‘𝐵) ∈ 𝑃) |
20 | 11 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐵 ∈ 𝑃) |
21 | 7 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐴 ∈ 𝑃) |
22 | simpr 488 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → (𝑀‘𝐵) ≠ 𝐵) | |
23 | 1, 2, 3, 4, 5, 16, 21, 8, 20 | mirbtwn 26778 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)) |
24 | 1, 3, 4, 16, 19, 20, 21, 22, 23 | btwnlng1 26739 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐴 ∈ ((𝑀‘𝐵)𝐿𝐵)) |
25 | 9 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐷 ∈ ran 𝐿) |
26 | 17 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → (𝑀‘𝐵) ∈ 𝐷) |
27 | 10 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐵 ∈ 𝐷) |
28 | 1, 3, 4, 16, 19, 20, 22, 22, 25, 26, 27 | tglinethru 26756 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐷 = ((𝑀‘𝐵)𝐿𝐵)) |
29 | 24, 28 | eleqtrrd 2843 | . 2 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐴 ∈ 𝐷) |
30 | 15, 29 | pm2.61dane 3031 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ≠ wne 2942 ran crn 5569 ‘cfv 6400 (class class class)co 7234 Basecbs 16790 distcds 16841 TarskiGcstrkg 26550 Itvcitv 26556 LineGclng 26557 pInvGcmir 26772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10812 ax-resscn 10813 ax-1cn 10814 ax-icn 10815 ax-addcl 10816 ax-addrcl 10817 ax-mulcl 10818 ax-mulrcl 10819 ax-mulcom 10820 ax-addass 10821 ax-mulass 10822 ax-distr 10823 ax-i2m1 10824 ax-1ne0 10825 ax-1rid 10826 ax-rnegex 10827 ax-rrecex 10828 ax-cnre 10829 ax-pre-lttri 10830 ax-pre-lttrn 10831 ax-pre-ltadd 10832 ax-pre-mulgt0 10833 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3711 df-csb 3828 df-dif 3885 df-un 3887 df-in 3889 df-ss 3899 df-pss 3901 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-1st 7782 df-2nd 7783 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-oadd 8229 df-er 8414 df-pm 8534 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-dju 9544 df-card 9582 df-pnf 10896 df-mnf 10897 df-xr 10898 df-ltxr 10899 df-le 10900 df-sub 11091 df-neg 11092 df-nn 11858 df-2 11920 df-3 11921 df-n0 12118 df-xnn0 12190 df-z 12204 df-uz 12466 df-fz 13123 df-fzo 13266 df-hash 13927 df-word 14100 df-concat 14156 df-s1 14183 df-s2 14443 df-s3 14444 df-trkgc 26568 df-trkgb 26569 df-trkgcb 26570 df-trkg 26573 df-cgrg 26631 df-mir 26773 |
This theorem is referenced by: opphl 26874 |
Copyright terms: Public domain | W3C validator |