Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mirln2 | Structured version Visualization version GIF version |
Description: If a point and its mirror point are both on the same line, so is the center of the point inversion. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirln2.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirln2.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
mirln2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirln2.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
mirln2.2 | ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝐷) |
Ref | Expression |
---|---|
mirln2 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . . . 5 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | mirln2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | mirln2.m | . . . . 5 ⊢ 𝑀 = (𝑆‘𝐴) | |
9 | mirln2.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
10 | mirln2.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
11 | 1, 4, 3, 6, 9, 10 | tglnpt 26814 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | mirinv 26931 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) |
13 | 12 | biimpa 476 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 = 𝐵) |
14 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐵 ∈ 𝐷) |
15 | 13, 14 | eqeltrd 2839 | . 2 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ 𝐷) |
16 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐺 ∈ TarskiG) |
17 | mirln2.2 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝐷) | |
18 | 1, 4, 3, 6, 9, 17 | tglnpt 26814 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → (𝑀‘𝐵) ∈ 𝑃) |
20 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐵 ∈ 𝑃) |
21 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐴 ∈ 𝑃) |
22 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → (𝑀‘𝐵) ≠ 𝐵) | |
23 | 1, 2, 3, 4, 5, 16, 21, 8, 20 | mirbtwn 26923 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)) |
24 | 1, 3, 4, 16, 19, 20, 21, 22, 23 | btwnlng1 26884 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐴 ∈ ((𝑀‘𝐵)𝐿𝐵)) |
25 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐷 ∈ ran 𝐿) |
26 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → (𝑀‘𝐵) ∈ 𝐷) |
27 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐵 ∈ 𝐷) |
28 | 1, 3, 4, 16, 19, 20, 22, 22, 25, 26, 27 | tglinethru 26901 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐷 = ((𝑀‘𝐵)𝐿𝐵)) |
29 | 24, 28 | eleqtrrd 2842 | . 2 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐴 ∈ 𝐷) |
30 | 15, 29 | pm2.61dane 3031 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ran crn 5581 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 LineGclng 26700 pInvGcmir 26917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-trkgc 26713 df-trkgb 26714 df-trkgcb 26715 df-trkg 26718 df-cgrg 26776 df-mir 26918 |
This theorem is referenced by: opphl 27019 |
Copyright terms: Public domain | W3C validator |