|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mirln2 | Structured version Visualization version GIF version | ||
| Description: If a point and its mirror point are both on the same line, so is the center of the point inversion. (Contributed by Thierry Arnoux, 3-Mar-2020.) | 
| Ref | Expression | 
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) | 
| mirval.d | ⊢ − = (dist‘𝐺) | 
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) | 
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) | 
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) | 
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| mirln2.m | ⊢ 𝑀 = (𝑆‘𝐴) | 
| mirln2.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | 
| mirln2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| mirln2.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) | 
| mirln2.2 | ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝐷) | 
| Ref | Expression | 
|---|---|
| mirln2 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mirval.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . . . 5 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirln2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | mirln2.m | . . . . 5 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 9 | mirln2.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 10 | mirln2.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 11 | 1, 4, 3, 6, 9, 10 | tglnpt 28557 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | mirinv 28674 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) | 
| 13 | 12 | biimpa 476 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 = 𝐵) | 
| 14 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐵 ∈ 𝐷) | 
| 15 | 13, 14 | eqeltrd 2841 | . 2 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ 𝐷) | 
| 16 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐺 ∈ TarskiG) | 
| 17 | mirln2.2 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝐷) | |
| 18 | 1, 4, 3, 6, 9, 17 | tglnpt 28557 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) | 
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → (𝑀‘𝐵) ∈ 𝑃) | 
| 20 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐵 ∈ 𝑃) | 
| 21 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐴 ∈ 𝑃) | 
| 22 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → (𝑀‘𝐵) ≠ 𝐵) | |
| 23 | 1, 2, 3, 4, 5, 16, 21, 8, 20 | mirbtwn 28666 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)) | 
| 24 | 1, 3, 4, 16, 19, 20, 21, 22, 23 | btwnlng1 28627 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐴 ∈ ((𝑀‘𝐵)𝐿𝐵)) | 
| 25 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐷 ∈ ran 𝐿) | 
| 26 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → (𝑀‘𝐵) ∈ 𝐷) | 
| 27 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐵 ∈ 𝐷) | 
| 28 | 1, 3, 4, 16, 19, 20, 22, 22, 25, 26, 27 | tglinethru 28644 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐷 = ((𝑀‘𝐵)𝐿𝐵)) | 
| 29 | 24, 28 | eleqtrrd 2844 | . 2 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐴 ∈ 𝐷) | 
| 30 | 15, 29 | pm2.61dane 3029 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ran crn 5686 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 distcds 17306 TarskiGcstrkg 28435 Itvcitv 28441 LineGclng 28442 pInvGcmir 28660 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-er 8745 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-hash 14370 df-word 14553 df-concat 14609 df-s1 14634 df-s2 14887 df-s3 14888 df-trkgc 28456 df-trkgb 28457 df-trkgcb 28458 df-trkg 28461 df-cgrg 28519 df-mir 28661 | 
| This theorem is referenced by: opphl 28762 | 
| Copyright terms: Public domain | W3C validator |