| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirln2 | Structured version Visualization version GIF version | ||
| Description: If a point and its mirror point are both on the same line, so is the center of the point inversion. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirln2.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mirln2.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| mirln2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirln2.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| mirln2.2 | ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝐷) |
| Ref | Expression |
|---|---|
| mirln2 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . . . 5 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirln2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | mirln2.m | . . . . 5 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 9 | mirln2.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 10 | mirln2.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 11 | 1, 4, 3, 6, 9, 10 | tglnpt 28547 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | mirinv 28664 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) |
| 13 | 12 | biimpa 476 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 = 𝐵) |
| 14 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐵 ∈ 𝐷) |
| 15 | 13, 14 | eqeltrd 2833 | . 2 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ 𝐷) |
| 16 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐺 ∈ TarskiG) |
| 17 | mirln2.2 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝐷) | |
| 18 | 1, 4, 3, 6, 9, 17 | tglnpt 28547 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → (𝑀‘𝐵) ∈ 𝑃) |
| 20 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐵 ∈ 𝑃) |
| 21 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐴 ∈ 𝑃) |
| 22 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → (𝑀‘𝐵) ≠ 𝐵) | |
| 23 | 1, 2, 3, 4, 5, 16, 21, 8, 20 | mirbtwn 28656 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)) |
| 24 | 1, 3, 4, 16, 19, 20, 21, 22, 23 | btwnlng1 28617 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐴 ∈ ((𝑀‘𝐵)𝐿𝐵)) |
| 25 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐷 ∈ ran 𝐿) |
| 26 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → (𝑀‘𝐵) ∈ 𝐷) |
| 27 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐵 ∈ 𝐷) |
| 28 | 1, 3, 4, 16, 19, 20, 22, 22, 25, 26, 27 | tglinethru 28634 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐷 = ((𝑀‘𝐵)𝐿𝐵)) |
| 29 | 24, 28 | eleqtrrd 2836 | . 2 ⊢ ((𝜑 ∧ (𝑀‘𝐵) ≠ 𝐵) → 𝐴 ∈ 𝐷) |
| 30 | 15, 29 | pm2.61dane 3016 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ran crn 5622 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 distcds 17177 TarskiGcstrkg 28425 Itvcitv 28431 LineGclng 28432 pInvGcmir 28650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-oadd 8398 df-er 8631 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9805 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-xnn0 12466 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 df-hash 14245 df-word 14428 df-concat 14485 df-s1 14511 df-s2 14762 df-s3 14763 df-trkgc 28446 df-trkgb 28447 df-trkgcb 28448 df-trkg 28451 df-cgrg 28509 df-mir 28651 |
| This theorem is referenced by: opphl 28752 |
| Copyright terms: Public domain | W3C validator |