MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimid Structured version   Visualization version   GIF version

Theorem lmimid 28728
Description: If we have a right angle, then the mirror point is the point inversion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmif.m 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmif.l 𝐿 = (LineG‘𝐺)
lmif.d (𝜑𝐷 ∈ ran 𝐿)
lmicl.1 (𝜑𝐴𝑃)
lmimid.s 𝑆 = ((pInvG‘𝐺)‘𝐵)
lmimid.r (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
lmimid.a (𝜑𝐴𝐷)
lmimid.b (𝜑𝐵𝐷)
lmimid.c (𝜑𝐶𝑃)
lmimid.d (𝜑𝐴𝐵)
Assertion
Ref Expression
lmimid (𝜑 → (𝑀𝐶) = (𝑆𝐶))

Proof of Theorem lmimid
StepHypRef Expression
1 lmimid.s . . . . . . 7 𝑆 = ((pInvG‘𝐺)‘𝐵)
21a1i 11 . . . . . 6 (𝜑𝑆 = ((pInvG‘𝐺)‘𝐵))
32fveq1d 6863 . . . . 5 (𝜑 → (𝑆𝐶) = (((pInvG‘𝐺)‘𝐵)‘𝐶))
4 ismid.p . . . . . 6 𝑃 = (Base‘𝐺)
5 ismid.d . . . . . 6 = (dist‘𝐺)
6 ismid.i . . . . . 6 𝐼 = (Itv‘𝐺)
7 ismid.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
8 ismid.1 . . . . . 6 (𝜑𝐺DimTarskiG≥2)
9 lmimid.c . . . . . 6 (𝜑𝐶𝑃)
10 lmif.l . . . . . . 7 𝐿 = (LineG‘𝐺)
11 eqid 2730 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
12 lmif.d . . . . . . . 8 (𝜑𝐷 ∈ ran 𝐿)
13 lmimid.b . . . . . . . 8 (𝜑𝐵𝐷)
144, 10, 6, 7, 12, 13tglnpt 28483 . . . . . . 7 (𝜑𝐵𝑃)
154, 5, 6, 10, 11, 7, 14, 1, 9mircl 28595 . . . . . 6 (𝜑 → (𝑆𝐶) ∈ 𝑃)
164, 5, 6, 7, 8, 9, 15, 11, 14ismidb 28712 . . . . 5 (𝜑 → ((𝑆𝐶) = (((pInvG‘𝐺)‘𝐵)‘𝐶) ↔ (𝐶(midG‘𝐺)(𝑆𝐶)) = 𝐵))
173, 16mpbid 232 . . . 4 (𝜑 → (𝐶(midG‘𝐺)(𝑆𝐶)) = 𝐵)
1817, 13eqeltrd 2829 . . 3 (𝜑 → (𝐶(midG‘𝐺)(𝑆𝐶)) ∈ 𝐷)
19 df-ne 2927 . . . . . 6 (𝐶 ≠ (𝑆𝐶) ↔ ¬ 𝐶 = (𝑆𝐶))
207adantr 480 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐺 ∈ TarskiG)
2112adantr 480 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐷 ∈ ran 𝐿)
229adantr 480 . . . . . . . . 9 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐶𝑃)
2315adantr 480 . . . . . . . . 9 ((𝜑𝐶 ≠ (𝑆𝐶)) → (𝑆𝐶) ∈ 𝑃)
24 simpr 484 . . . . . . . . 9 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐶 ≠ (𝑆𝐶))
254, 6, 10, 20, 22, 23, 24tgelrnln 28564 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → (𝐶𝐿(𝑆𝐶)) ∈ ran 𝐿)
2613adantr 480 . . . . . . . . 9 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐵𝐷)
2714adantr 480 . . . . . . . . . 10 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐵𝑃)
284, 5, 6, 7, 8, 9, 15midbtwn 28713 . . . . . . . . . . . 12 (𝜑 → (𝐶(midG‘𝐺)(𝑆𝐶)) ∈ (𝐶𝐼(𝑆𝐶)))
2917, 28eqeltrrd 2830 . . . . . . . . . . 11 (𝜑𝐵 ∈ (𝐶𝐼(𝑆𝐶)))
3029adantr 480 . . . . . . . . . 10 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐵 ∈ (𝐶𝐼(𝑆𝐶)))
314, 6, 10, 20, 22, 23, 27, 24, 30btwnlng1 28553 . . . . . . . . 9 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐵 ∈ (𝐶𝐿(𝑆𝐶)))
3226, 31elind 4166 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐵 ∈ (𝐷 ∩ (𝐶𝐿(𝑆𝐶))))
33 lmimid.a . . . . . . . . 9 (𝜑𝐴𝐷)
3433adantr 480 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐴𝐷)
354, 6, 10, 20, 22, 23, 24tglinerflx1 28567 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐶 ∈ (𝐶𝐿(𝑆𝐶)))
36 lmimid.d . . . . . . . . 9 (𝜑𝐴𝐵)
3736adantr 480 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐴𝐵)
384, 5, 6, 10, 11, 7, 14, 1, 9mirinv 28600 . . . . . . . . . . . . . 14 (𝜑 → ((𝑆𝐶) = 𝐶𝐵 = 𝐶))
39 eqcom 2737 . . . . . . . . . . . . . 14 (𝐵 = 𝐶𝐶 = 𝐵)
4038, 39bitrdi 287 . . . . . . . . . . . . 13 (𝜑 → ((𝑆𝐶) = 𝐶𝐶 = 𝐵))
4140biimpar 477 . . . . . . . . . . . 12 ((𝜑𝐶 = 𝐵) → (𝑆𝐶) = 𝐶)
4241eqcomd 2736 . . . . . . . . . . 11 ((𝜑𝐶 = 𝐵) → 𝐶 = (𝑆𝐶))
4342ex 412 . . . . . . . . . 10 (𝜑 → (𝐶 = 𝐵𝐶 = (𝑆𝐶)))
4443necon3d 2947 . . . . . . . . 9 (𝜑 → (𝐶 ≠ (𝑆𝐶) → 𝐶𝐵))
4544imp 406 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐶𝐵)
46 lmimid.r . . . . . . . . 9 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
4746adantr 480 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
484, 5, 6, 10, 20, 21, 25, 32, 34, 35, 37, 45, 47ragperp 28651 . . . . . . 7 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶)))
4948ex 412 . . . . . 6 (𝜑 → (𝐶 ≠ (𝑆𝐶) → 𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶))))
5019, 49biimtrrid 243 . . . . 5 (𝜑 → (¬ 𝐶 = (𝑆𝐶) → 𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶))))
5150orrd 863 . . . 4 (𝜑 → (𝐶 = (𝑆𝐶) ∨ 𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶))))
5251orcomd 871 . . 3 (𝜑 → (𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶)) ∨ 𝐶 = (𝑆𝐶)))
53 lmif.m . . . 4 𝑀 = ((lInvG‘𝐺)‘𝐷)
544, 5, 6, 7, 8, 53, 10, 12, 9, 15islmib 28721 . . 3 (𝜑 → ((𝑆𝐶) = (𝑀𝐶) ↔ ((𝐶(midG‘𝐺)(𝑆𝐶)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶)) ∨ 𝐶 = (𝑆𝐶)))))
5518, 52, 54mpbir2and 713 . 2 (𝜑 → (𝑆𝐶) = (𝑀𝐶))
5655eqcomd 2736 1 (𝜑 → (𝑀𝐶) = (𝑆𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  ran crn 5642  cfv 6514  (class class class)co 7390  2c2 12248  ⟨“cs3 14815  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  DimTarskiGcstrkgld 28365  Itvcitv 28367  LineGclng 28368  pInvGcmir 28586  ∟Gcrag 28627  ⟂Gcperpg 28629  midGcmid 28706  lInvGclmi 28707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-trkgc 28382  df-trkgb 28383  df-trkgcb 28384  df-trkgld 28386  df-trkg 28387  df-cgrg 28445  df-leg 28517  df-mir 28587  df-rag 28628  df-perpg 28630  df-mid 28708  df-lmi 28709
This theorem is referenced by:  hypcgrlem1  28733
  Copyright terms: Public domain W3C validator