MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimid Structured version   Visualization version   GIF version

Theorem lmimid 27155
Description: If we have a right angle, then the mirror point is the point inversion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmif.m 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmif.l 𝐿 = (LineG‘𝐺)
lmif.d (𝜑𝐷 ∈ ran 𝐿)
lmicl.1 (𝜑𝐴𝑃)
lmimid.s 𝑆 = ((pInvG‘𝐺)‘𝐵)
lmimid.r (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
lmimid.a (𝜑𝐴𝐷)
lmimid.b (𝜑𝐵𝐷)
lmimid.c (𝜑𝐶𝑃)
lmimid.d (𝜑𝐴𝐵)
Assertion
Ref Expression
lmimid (𝜑 → (𝑀𝐶) = (𝑆𝐶))

Proof of Theorem lmimid
StepHypRef Expression
1 lmimid.s . . . . . . 7 𝑆 = ((pInvG‘𝐺)‘𝐵)
21a1i 11 . . . . . 6 (𝜑𝑆 = ((pInvG‘𝐺)‘𝐵))
32fveq1d 6776 . . . . 5 (𝜑 → (𝑆𝐶) = (((pInvG‘𝐺)‘𝐵)‘𝐶))
4 ismid.p . . . . . 6 𝑃 = (Base‘𝐺)
5 ismid.d . . . . . 6 = (dist‘𝐺)
6 ismid.i . . . . . 6 𝐼 = (Itv‘𝐺)
7 ismid.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
8 ismid.1 . . . . . 6 (𝜑𝐺DimTarskiG≥2)
9 lmimid.c . . . . . 6 (𝜑𝐶𝑃)
10 lmif.l . . . . . . 7 𝐿 = (LineG‘𝐺)
11 eqid 2738 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
12 lmif.d . . . . . . . 8 (𝜑𝐷 ∈ ran 𝐿)
13 lmimid.b . . . . . . . 8 (𝜑𝐵𝐷)
144, 10, 6, 7, 12, 13tglnpt 26910 . . . . . . 7 (𝜑𝐵𝑃)
154, 5, 6, 10, 11, 7, 14, 1, 9mircl 27022 . . . . . 6 (𝜑 → (𝑆𝐶) ∈ 𝑃)
164, 5, 6, 7, 8, 9, 15, 11, 14ismidb 27139 . . . . 5 (𝜑 → ((𝑆𝐶) = (((pInvG‘𝐺)‘𝐵)‘𝐶) ↔ (𝐶(midG‘𝐺)(𝑆𝐶)) = 𝐵))
173, 16mpbid 231 . . . 4 (𝜑 → (𝐶(midG‘𝐺)(𝑆𝐶)) = 𝐵)
1817, 13eqeltrd 2839 . . 3 (𝜑 → (𝐶(midG‘𝐺)(𝑆𝐶)) ∈ 𝐷)
19 df-ne 2944 . . . . . 6 (𝐶 ≠ (𝑆𝐶) ↔ ¬ 𝐶 = (𝑆𝐶))
207adantr 481 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐺 ∈ TarskiG)
2112adantr 481 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐷 ∈ ran 𝐿)
229adantr 481 . . . . . . . . 9 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐶𝑃)
2315adantr 481 . . . . . . . . 9 ((𝜑𝐶 ≠ (𝑆𝐶)) → (𝑆𝐶) ∈ 𝑃)
24 simpr 485 . . . . . . . . 9 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐶 ≠ (𝑆𝐶))
254, 6, 10, 20, 22, 23, 24tgelrnln 26991 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → (𝐶𝐿(𝑆𝐶)) ∈ ran 𝐿)
2613adantr 481 . . . . . . . . 9 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐵𝐷)
2714adantr 481 . . . . . . . . . 10 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐵𝑃)
284, 5, 6, 7, 8, 9, 15midbtwn 27140 . . . . . . . . . . . 12 (𝜑 → (𝐶(midG‘𝐺)(𝑆𝐶)) ∈ (𝐶𝐼(𝑆𝐶)))
2917, 28eqeltrrd 2840 . . . . . . . . . . 11 (𝜑𝐵 ∈ (𝐶𝐼(𝑆𝐶)))
3029adantr 481 . . . . . . . . . 10 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐵 ∈ (𝐶𝐼(𝑆𝐶)))
314, 6, 10, 20, 22, 23, 27, 24, 30btwnlng1 26980 . . . . . . . . 9 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐵 ∈ (𝐶𝐿(𝑆𝐶)))
3226, 31elind 4128 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐵 ∈ (𝐷 ∩ (𝐶𝐿(𝑆𝐶))))
33 lmimid.a . . . . . . . . 9 (𝜑𝐴𝐷)
3433adantr 481 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐴𝐷)
354, 6, 10, 20, 22, 23, 24tglinerflx1 26994 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐶 ∈ (𝐶𝐿(𝑆𝐶)))
36 lmimid.d . . . . . . . . 9 (𝜑𝐴𝐵)
3736adantr 481 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐴𝐵)
384, 5, 6, 10, 11, 7, 14, 1, 9mirinv 27027 . . . . . . . . . . . . . 14 (𝜑 → ((𝑆𝐶) = 𝐶𝐵 = 𝐶))
39 eqcom 2745 . . . . . . . . . . . . . 14 (𝐵 = 𝐶𝐶 = 𝐵)
4038, 39bitrdi 287 . . . . . . . . . . . . 13 (𝜑 → ((𝑆𝐶) = 𝐶𝐶 = 𝐵))
4140biimpar 478 . . . . . . . . . . . 12 ((𝜑𝐶 = 𝐵) → (𝑆𝐶) = 𝐶)
4241eqcomd 2744 . . . . . . . . . . 11 ((𝜑𝐶 = 𝐵) → 𝐶 = (𝑆𝐶))
4342ex 413 . . . . . . . . . 10 (𝜑 → (𝐶 = 𝐵𝐶 = (𝑆𝐶)))
4443necon3d 2964 . . . . . . . . 9 (𝜑 → (𝐶 ≠ (𝑆𝐶) → 𝐶𝐵))
4544imp 407 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐶𝐵)
46 lmimid.r . . . . . . . . 9 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
4746adantr 481 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
484, 5, 6, 10, 20, 21, 25, 32, 34, 35, 37, 45, 47ragperp 27078 . . . . . . 7 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶)))
4948ex 413 . . . . . 6 (𝜑 → (𝐶 ≠ (𝑆𝐶) → 𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶))))
5019, 49syl5bir 242 . . . . 5 (𝜑 → (¬ 𝐶 = (𝑆𝐶) → 𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶))))
5150orrd 860 . . . 4 (𝜑 → (𝐶 = (𝑆𝐶) ∨ 𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶))))
5251orcomd 868 . . 3 (𝜑 → (𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶)) ∨ 𝐶 = (𝑆𝐶)))
53 lmif.m . . . 4 𝑀 = ((lInvG‘𝐺)‘𝐷)
544, 5, 6, 7, 8, 53, 10, 12, 9, 15islmib 27148 . . 3 (𝜑 → ((𝑆𝐶) = (𝑀𝐶) ↔ ((𝐶(midG‘𝐺)(𝑆𝐶)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶)) ∨ 𝐶 = (𝑆𝐶)))))
5518, 52, 54mpbir2and 710 . 2 (𝜑 → (𝑆𝐶) = (𝑀𝐶))
5655eqcomd 2744 1 (𝜑 → (𝑀𝐶) = (𝑆𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  ran crn 5590  cfv 6433  (class class class)co 7275  2c2 12028  ⟨“cs3 14555  Basecbs 16912  distcds 16971  TarskiGcstrkg 26788  DimTarskiGcstrkgld 26792  Itvcitv 26794  LineGclng 26795  pInvGcmir 27013  ∟Gcrag 27054  ⟂Gcperpg 27056  midGcmid 27133  lInvGclmi 27134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-trkgc 26809  df-trkgb 26810  df-trkgcb 26811  df-trkgld 26813  df-trkg 26814  df-cgrg 26872  df-leg 26944  df-mir 27014  df-rag 27055  df-perpg 27057  df-mid 27135  df-lmi 27136
This theorem is referenced by:  hypcgrlem1  27160
  Copyright terms: Public domain W3C validator