MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatglbss Structured version   Visualization version   GIF version

Theorem clatglbss 18529
Description: Subset law for greatest lower bound. (Contributed by Mario Carneiro, 16-Apr-2014.)
Hypotheses
Ref Expression
clatglb.b 𝐵 = (Base‘𝐾)
clatglb.l = (le‘𝐾)
clatglb.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatglbss ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝐺𝑇) (𝐺𝑆))

Proof of Theorem clatglbss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝐾 ∈ CLat)
2 simpl2 1193 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝑇𝐵)
3 simp3 1138 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → 𝑆𝑇)
43sselda 3958 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝑦𝑇)
5 clatglb.b . . . . 5 𝐵 = (Base‘𝐾)
6 clatglb.l . . . . 5 = (le‘𝐾)
7 clatglb.g . . . . 5 𝐺 = (glb‘𝐾)
85, 6, 7clatglble 18527 . . . 4 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑦𝑇) → (𝐺𝑇) 𝑦)
91, 2, 4, 8syl3anc 1373 . . 3 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → (𝐺𝑇) 𝑦)
109ralrimiva 3132 . 2 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → ∀𝑦𝑆 (𝐺𝑇) 𝑦)
11 simp1 1136 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → 𝐾 ∈ CLat)
125, 7clatglbcl 18515 . . . 4 ((𝐾 ∈ CLat ∧ 𝑇𝐵) → (𝐺𝑇) ∈ 𝐵)
13123adant3 1132 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝐺𝑇) ∈ 𝐵)
14 sstr 3967 . . . . 5 ((𝑆𝑇𝑇𝐵) → 𝑆𝐵)
1514ancoms 458 . . . 4 ((𝑇𝐵𝑆𝑇) → 𝑆𝐵)
16153adant1 1130 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → 𝑆𝐵)
175, 6, 7clatleglb 18528 . . 3 ((𝐾 ∈ CLat ∧ (𝐺𝑇) ∈ 𝐵𝑆𝐵) → ((𝐺𝑇) (𝐺𝑆) ↔ ∀𝑦𝑆 (𝐺𝑇) 𝑦))
1811, 13, 16, 17syl3anc 1373 . 2 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → ((𝐺𝑇) (𝐺𝑆) ↔ ∀𝑦𝑆 (𝐺𝑇) 𝑦))
1910, 18mpbird 257 1 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝐺𝑇) (𝐺𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wss 3926   class class class wbr 5119  cfv 6531  Basecbs 17228  lecple 17278  glbcglb 18322  CLatccla 18508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-oprab 7409  df-poset 18325  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-lat 18442  df-clat 18509
This theorem is referenced by:  dochss  41384
  Copyright terms: Public domain W3C validator