![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clatglbss | Structured version Visualization version GIF version |
Description: Subset law for greatest lower bound. (Contributed by Mario Carneiro, 16-Apr-2014.) |
Ref | Expression |
---|---|
clatglb.b | ⊢ 𝐵 = (Base‘𝐾) |
clatglb.l | ⊢ ≤ = (le‘𝐾) |
clatglb.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
clatglbss | ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ≤ (𝐺‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝐾 ∈ CLat) | |
2 | simpl2 1191 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑇 ⊆ 𝐵) | |
3 | simp3 1137 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝑇) | |
4 | 3 | sselda 3994 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑇) |
5 | clatglb.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
6 | clatglb.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
7 | clatglb.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
8 | 5, 6, 7 | clatglble 18574 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑇) → (𝐺‘𝑇) ≤ 𝑦) |
9 | 1, 2, 4, 8 | syl3anc 1370 | . . 3 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → (𝐺‘𝑇) ≤ 𝑦) |
10 | 9 | ralrimiva 3143 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → ∀𝑦 ∈ 𝑆 (𝐺‘𝑇) ≤ 𝑦) |
11 | simp1 1135 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝐾 ∈ CLat) | |
12 | 5, 7 | clatglbcl 18562 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵) → (𝐺‘𝑇) ∈ 𝐵) |
13 | 12 | 3adant3 1131 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ∈ 𝐵) |
14 | sstr 4003 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ 𝐵) → 𝑆 ⊆ 𝐵) | |
15 | 14 | ancoms 458 | . . . 4 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) |
16 | 15 | 3adant1 1129 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) |
17 | 5, 6, 7 | clatleglb 18575 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ (𝐺‘𝑇) ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵) → ((𝐺‘𝑇) ≤ (𝐺‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝐺‘𝑇) ≤ 𝑦)) |
18 | 11, 13, 16, 17 | syl3anc 1370 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → ((𝐺‘𝑇) ≤ (𝐺‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝐺‘𝑇) ≤ 𝑦)) |
19 | 10, 18 | mpbird 257 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ≤ (𝐺‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ⊆ wss 3962 class class class wbr 5147 ‘cfv 6562 Basecbs 17244 lecple 17304 glbcglb 18367 CLatccla 18555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-oprab 7434 df-poset 18370 df-lub 18403 df-glb 18404 df-join 18405 df-meet 18406 df-lat 18489 df-clat 18556 |
This theorem is referenced by: dochss 41347 |
Copyright terms: Public domain | W3C validator |