| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clatglbss | Structured version Visualization version GIF version | ||
| Description: Subset law for greatest lower bound. (Contributed by Mario Carneiro, 16-Apr-2014.) |
| Ref | Expression |
|---|---|
| clatglb.b | ⊢ 𝐵 = (Base‘𝐾) |
| clatglb.l | ⊢ ≤ = (le‘𝐾) |
| clatglb.g | ⊢ 𝐺 = (glb‘𝐾) |
| Ref | Expression |
|---|---|
| clatglbss | ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ≤ (𝐺‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝐾 ∈ CLat) | |
| 2 | simpl2 1193 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑇 ⊆ 𝐵) | |
| 3 | simp3 1139 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝑇) | |
| 4 | 3 | sselda 3983 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑇) |
| 5 | clatglb.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | clatglb.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 7 | clatglb.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
| 8 | 5, 6, 7 | clatglble 18562 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑇) → (𝐺‘𝑇) ≤ 𝑦) |
| 9 | 1, 2, 4, 8 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → (𝐺‘𝑇) ≤ 𝑦) |
| 10 | 9 | ralrimiva 3146 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → ∀𝑦 ∈ 𝑆 (𝐺‘𝑇) ≤ 𝑦) |
| 11 | simp1 1137 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝐾 ∈ CLat) | |
| 12 | 5, 7 | clatglbcl 18550 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵) → (𝐺‘𝑇) ∈ 𝐵) |
| 13 | 12 | 3adant3 1133 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ∈ 𝐵) |
| 14 | sstr 3992 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ 𝐵) → 𝑆 ⊆ 𝐵) | |
| 15 | 14 | ancoms 458 | . . . 4 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) |
| 16 | 15 | 3adant1 1131 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) |
| 17 | 5, 6, 7 | clatleglb 18563 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ (𝐺‘𝑇) ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵) → ((𝐺‘𝑇) ≤ (𝐺‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝐺‘𝑇) ≤ 𝑦)) |
| 18 | 11, 13, 16, 17 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → ((𝐺‘𝑇) ≤ (𝐺‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝐺‘𝑇) ≤ 𝑦)) |
| 19 | 10, 18 | mpbird 257 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ≤ (𝐺‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 class class class wbr 5143 ‘cfv 6561 Basecbs 17247 lecple 17304 glbcglb 18356 CLatccla 18543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-oprab 7435 df-poset 18359 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-lat 18477 df-clat 18544 |
| This theorem is referenced by: dochss 41367 |
| Copyright terms: Public domain | W3C validator |