MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatglbss Structured version   Visualization version   GIF version

Theorem clatglbss 18454
Description: Subset law for greatest lower bound. (Contributed by Mario Carneiro, 16-Apr-2014.)
Hypotheses
Ref Expression
clatglb.b 𝐵 = (Base‘𝐾)
clatglb.l = (le‘𝐾)
clatglb.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatglbss ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝐺𝑇) (𝐺𝑆))

Proof of Theorem clatglbss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1191 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝐾 ∈ CLat)
2 simpl2 1192 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝑇𝐵)
3 simp3 1138 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → 𝑆𝑇)
43sselda 3978 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝑦𝑇)
5 clatglb.b . . . . 5 𝐵 = (Base‘𝐾)
6 clatglb.l . . . . 5 = (le‘𝐾)
7 clatglb.g . . . . 5 𝐺 = (glb‘𝐾)
85, 6, 7clatglble 18452 . . . 4 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑦𝑇) → (𝐺𝑇) 𝑦)
91, 2, 4, 8syl3anc 1371 . . 3 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → (𝐺𝑇) 𝑦)
109ralrimiva 3145 . 2 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → ∀𝑦𝑆 (𝐺𝑇) 𝑦)
11 simp1 1136 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → 𝐾 ∈ CLat)
125, 7clatglbcl 18440 . . . 4 ((𝐾 ∈ CLat ∧ 𝑇𝐵) → (𝐺𝑇) ∈ 𝐵)
13123adant3 1132 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝐺𝑇) ∈ 𝐵)
14 sstr 3986 . . . . 5 ((𝑆𝑇𝑇𝐵) → 𝑆𝐵)
1514ancoms 459 . . . 4 ((𝑇𝐵𝑆𝑇) → 𝑆𝐵)
16153adant1 1130 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → 𝑆𝐵)
175, 6, 7clatleglb 18453 . . 3 ((𝐾 ∈ CLat ∧ (𝐺𝑇) ∈ 𝐵𝑆𝐵) → ((𝐺𝑇) (𝐺𝑆) ↔ ∀𝑦𝑆 (𝐺𝑇) 𝑦))
1811, 13, 16, 17syl3anc 1371 . 2 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → ((𝐺𝑇) (𝐺𝑆) ↔ ∀𝑦𝑆 (𝐺𝑇) 𝑦))
1910, 18mpbird 256 1 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝐺𝑇) (𝐺𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3060  wss 3944   class class class wbr 5141  cfv 6532  Basecbs 17126  lecple 17186  glbcglb 18245  CLatccla 18433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-oprab 7397  df-poset 18248  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-lat 18367  df-clat 18434
This theorem is referenced by:  dochss  40041
  Copyright terms: Public domain W3C validator