![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clatglbss | Structured version Visualization version GIF version |
Description: Subset law for greatest lower bound. (Contributed by Mario Carneiro, 16-Apr-2014.) |
Ref | Expression |
---|---|
clatglb.b | ⊢ 𝐵 = (Base‘𝐾) |
clatglb.l | ⊢ ≤ = (le‘𝐾) |
clatglb.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
clatglbss | ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ≤ (𝐺‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1191 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝐾 ∈ CLat) | |
2 | simpl2 1192 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑇 ⊆ 𝐵) | |
3 | simp3 1138 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝑇) | |
4 | 3 | sselda 3978 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑇) |
5 | clatglb.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
6 | clatglb.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
7 | clatglb.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
8 | 5, 6, 7 | clatglble 18452 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑇) → (𝐺‘𝑇) ≤ 𝑦) |
9 | 1, 2, 4, 8 | syl3anc 1371 | . . 3 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → (𝐺‘𝑇) ≤ 𝑦) |
10 | 9 | ralrimiva 3145 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → ∀𝑦 ∈ 𝑆 (𝐺‘𝑇) ≤ 𝑦) |
11 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝐾 ∈ CLat) | |
12 | 5, 7 | clatglbcl 18440 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵) → (𝐺‘𝑇) ∈ 𝐵) |
13 | 12 | 3adant3 1132 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ∈ 𝐵) |
14 | sstr 3986 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ 𝐵) → 𝑆 ⊆ 𝐵) | |
15 | 14 | ancoms 459 | . . . 4 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) |
16 | 15 | 3adant1 1130 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) |
17 | 5, 6, 7 | clatleglb 18453 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ (𝐺‘𝑇) ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵) → ((𝐺‘𝑇) ≤ (𝐺‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝐺‘𝑇) ≤ 𝑦)) |
18 | 11, 13, 16, 17 | syl3anc 1371 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → ((𝐺‘𝑇) ≤ (𝐺‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝐺‘𝑇) ≤ 𝑦)) |
19 | 10, 18 | mpbird 256 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ≤ (𝐺‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3060 ⊆ wss 3944 class class class wbr 5141 ‘cfv 6532 Basecbs 17126 lecple 17186 glbcglb 18245 CLatccla 18433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-oprab 7397 df-poset 18248 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-lat 18367 df-clat 18434 |
This theorem is referenced by: dochss 40041 |
Copyright terms: Public domain | W3C validator |