Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clatglbss | Structured version Visualization version GIF version |
Description: Subset law for greatest lower bound. (Contributed by Mario Carneiro, 16-Apr-2014.) |
Ref | Expression |
---|---|
clatglb.b | ⊢ 𝐵 = (Base‘𝐾) |
clatglb.l | ⊢ ≤ = (le‘𝐾) |
clatglb.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
clatglbss | ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ≤ (𝐺‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝐾 ∈ CLat) | |
2 | simpl2 1191 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑇 ⊆ 𝐵) | |
3 | simp3 1137 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝑇) | |
4 | 3 | sselda 3921 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑇) |
5 | clatglb.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
6 | clatglb.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
7 | clatglb.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
8 | 5, 6, 7 | clatglble 18235 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑇) → (𝐺‘𝑇) ≤ 𝑦) |
9 | 1, 2, 4, 8 | syl3anc 1370 | . . 3 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → (𝐺‘𝑇) ≤ 𝑦) |
10 | 9 | ralrimiva 3103 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → ∀𝑦 ∈ 𝑆 (𝐺‘𝑇) ≤ 𝑦) |
11 | simp1 1135 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝐾 ∈ CLat) | |
12 | 5, 7 | clatglbcl 18223 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵) → (𝐺‘𝑇) ∈ 𝐵) |
13 | 12 | 3adant3 1131 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ∈ 𝐵) |
14 | sstr 3929 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ 𝐵) → 𝑆 ⊆ 𝐵) | |
15 | 14 | ancoms 459 | . . . 4 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) |
16 | 15 | 3adant1 1129 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) |
17 | 5, 6, 7 | clatleglb 18236 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ (𝐺‘𝑇) ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵) → ((𝐺‘𝑇) ≤ (𝐺‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝐺‘𝑇) ≤ 𝑦)) |
18 | 11, 13, 16, 17 | syl3anc 1370 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → ((𝐺‘𝑇) ≤ (𝐺‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝐺‘𝑇) ≤ 𝑦)) |
19 | 10, 18 | mpbird 256 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ≤ (𝐺‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 lecple 16969 glbcglb 18028 CLatccla 18216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-oprab 7279 df-poset 18031 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-lat 18150 df-clat 18217 |
This theorem is referenced by: dochss 39379 |
Copyright terms: Public domain | W3C validator |