![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clatglbss | Structured version Visualization version GIF version |
Description: Subset law for greatest lower bound. (Contributed by Mario Carneiro, 16-Apr-2014.) |
Ref | Expression |
---|---|
clatglb.b | ⊢ 𝐵 = (Base‘𝐾) |
clatglb.l | ⊢ ≤ = (le‘𝐾) |
clatglb.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
clatglbss | ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ≤ (𝐺‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1246 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝐾 ∈ CLat) | |
2 | simpl2 1248 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑇 ⊆ 𝐵) | |
3 | simp3 1172 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝑇) | |
4 | 3 | sselda 3827 | . . . 4 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑇) |
5 | clatglb.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
6 | clatglb.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
7 | clatglb.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
8 | 5, 6, 7 | clatglble 17485 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑇) → (𝐺‘𝑇) ≤ 𝑦) |
9 | 1, 2, 4, 8 | syl3anc 1494 | . . 3 ⊢ (((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) ∧ 𝑦 ∈ 𝑆) → (𝐺‘𝑇) ≤ 𝑦) |
10 | 9 | ralrimiva 3175 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → ∀𝑦 ∈ 𝑆 (𝐺‘𝑇) ≤ 𝑦) |
11 | simp1 1170 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝐾 ∈ CLat) | |
12 | 5, 7 | clatglbcl 17474 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵) → (𝐺‘𝑇) ∈ 𝐵) |
13 | 12 | 3adant3 1166 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ∈ 𝐵) |
14 | sstr 3835 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ 𝐵) → 𝑆 ⊆ 𝐵) | |
15 | 14 | ancoms 452 | . . . 4 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) |
16 | 15 | 3adant1 1164 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝐵) |
17 | 5, 6, 7 | clatleglb 17486 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ (𝐺‘𝑇) ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵) → ((𝐺‘𝑇) ≤ (𝐺‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝐺‘𝑇) ≤ 𝑦)) |
18 | 11, 13, 16, 17 | syl3anc 1494 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → ((𝐺‘𝑇) ≤ (𝐺‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝐺‘𝑇) ≤ 𝑦)) |
19 | 10, 18 | mpbird 249 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ≤ (𝐺‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ⊆ wss 3798 class class class wbr 4875 ‘cfv 6127 Basecbs 16229 lecple 16319 glbcglb 17303 CLatccla 17467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-oprab 6914 df-poset 17306 df-lub 17334 df-glb 17335 df-join 17336 df-meet 17337 df-lat 17406 df-clat 17468 |
This theorem is referenced by: dochss 37435 |
Copyright terms: Public domain | W3C validator |