MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatglbss Structured version   Visualization version   GIF version

Theorem clatglbss 18564
Description: Subset law for greatest lower bound. (Contributed by Mario Carneiro, 16-Apr-2014.)
Hypotheses
Ref Expression
clatglb.b 𝐵 = (Base‘𝐾)
clatglb.l = (le‘𝐾)
clatglb.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatglbss ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝐺𝑇) (𝐺𝑆))

Proof of Theorem clatglbss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝐾 ∈ CLat)
2 simpl2 1193 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝑇𝐵)
3 simp3 1139 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → 𝑆𝑇)
43sselda 3983 . . . 4 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → 𝑦𝑇)
5 clatglb.b . . . . 5 𝐵 = (Base‘𝐾)
6 clatglb.l . . . . 5 = (le‘𝐾)
7 clatglb.g . . . . 5 𝐺 = (glb‘𝐾)
85, 6, 7clatglble 18562 . . . 4 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑦𝑇) → (𝐺𝑇) 𝑦)
91, 2, 4, 8syl3anc 1373 . . 3 (((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) ∧ 𝑦𝑆) → (𝐺𝑇) 𝑦)
109ralrimiva 3146 . 2 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → ∀𝑦𝑆 (𝐺𝑇) 𝑦)
11 simp1 1137 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → 𝐾 ∈ CLat)
125, 7clatglbcl 18550 . . . 4 ((𝐾 ∈ CLat ∧ 𝑇𝐵) → (𝐺𝑇) ∈ 𝐵)
13123adant3 1133 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝐺𝑇) ∈ 𝐵)
14 sstr 3992 . . . . 5 ((𝑆𝑇𝑇𝐵) → 𝑆𝐵)
1514ancoms 458 . . . 4 ((𝑇𝐵𝑆𝑇) → 𝑆𝐵)
16153adant1 1131 . . 3 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → 𝑆𝐵)
175, 6, 7clatleglb 18563 . . 3 ((𝐾 ∈ CLat ∧ (𝐺𝑇) ∈ 𝐵𝑆𝐵) → ((𝐺𝑇) (𝐺𝑆) ↔ ∀𝑦𝑆 (𝐺𝑇) 𝑦))
1811, 13, 16, 17syl3anc 1373 . 2 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → ((𝐺𝑇) (𝐺𝑆) ↔ ∀𝑦𝑆 (𝐺𝑇) 𝑦))
1910, 18mpbird 257 1 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇) → (𝐺𝑇) (𝐺𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wss 3951   class class class wbr 5143  cfv 6561  Basecbs 17247  lecple 17304  glbcglb 18356  CLatccla 18543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-oprab 7435  df-poset 18359  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-lat 18477  df-clat 18544
This theorem is referenced by:  dochss  41367
  Copyright terms: Public domain W3C validator