Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isgrlim2 Structured version   Visualization version   GIF version

Theorem isgrlim2 48013
Description: A local isomorphism of graphs is a bijection between their vertices that preserves neighborhoods. Definitions expanded. (Contributed by AV, 29-May-2025.)
Hypotheses
Ref Expression
isgrlim.v 𝑉 = (Vtx‘𝐺)
isgrlim.w 𝑊 = (Vtx‘𝐻)
isgrlim2.n 𝑁 = (𝐺 ClNeighbVtx 𝑣)
isgrlim2.m 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑣))
isgrlim2.i 𝐼 = (iEdg‘𝐺)
isgrlim2.j 𝐽 = (iEdg‘𝐻)
isgrlim2.k 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
isgrlim2.l 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
Assertion
Ref Expression
isgrlim2 ((𝐺𝑋𝐻𝑌𝐹𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
Distinct variable groups:   𝑓,𝐹,𝑔,𝑣   𝑓,𝐺,𝑔,𝑣   𝑓,𝐻,𝑔,𝑣   𝑣,𝑉   𝑓,𝑋,𝑔   𝑓,𝑌,𝑔   𝑓,𝑍,𝑔   𝑖,𝐺   𝑥,𝐺   𝑖,𝐻   𝑥,𝐻   𝑥,𝐼   𝑥,𝐽   𝑖,𝐾   𝑖,𝐿   𝑓,𝑀,𝑔,𝑖   𝑥,𝑀   𝑓,𝑁,𝑔,𝑖   𝑥,𝑁   𝑖,𝑋,𝑣   𝑖,𝑌,𝑣   𝑣,𝑍
Allowed substitution hints:   𝐹(𝑥,𝑖)   𝐼(𝑣,𝑓,𝑔,𝑖)   𝐽(𝑣,𝑓,𝑔,𝑖)   𝐾(𝑥,𝑣,𝑓,𝑔)   𝐿(𝑥,𝑣,𝑓,𝑔)   𝑀(𝑣)   𝑁(𝑣)   𝑉(𝑥,𝑓,𝑔,𝑖)   𝑊(𝑥,𝑣,𝑓,𝑔,𝑖)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥,𝑖)

Proof of Theorem isgrlim2
StepHypRef Expression
1 isgrlim.v . . 3 𝑉 = (Vtx‘𝐺)
2 isgrlim.w . . 3 𝑊 = (Vtx‘𝐻)
31, 2isgrlim 48012 . 2 ((𝐺𝑋𝐻𝑌𝐹𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))))))
4 isgrlim2.n . . . . . . . . 9 𝑁 = (𝐺 ClNeighbVtx 𝑣)
54eqcomi 2740 . . . . . . . 8 (𝐺 ClNeighbVtx 𝑣) = 𝑁
65oveq2i 7357 . . . . . . 7 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) = (𝐺 ISubGr 𝑁)
7 isgrlim2.m . . . . . . . . 9 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑣))
87eqcomi 2740 . . . . . . . 8 (𝐻 ClNeighbVtx (𝐹𝑣)) = 𝑀
98oveq2i 7357 . . . . . . 7 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))) = (𝐻 ISubGr 𝑀)
106, 9breq12i 5100 . . . . . 6 ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))) ↔ (𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀))
1110a1i 11 . . . . 5 ((𝐺𝑋𝐻𝑌𝐹𝑍) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))) ↔ (𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀)))
12 isgrlim2.i . . . . . . 7 𝐼 = (iEdg‘𝐺)
13 isgrlim2.j . . . . . . 7 𝐽 = (iEdg‘𝐻)
14 isgrlim2.k . . . . . . 7 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
15 isgrlim2.l . . . . . . 7 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
1612, 13, 4, 7, 14, 15clnbgrisubgrgrim 47962 . . . . . 6 ((𝐺𝑋𝐻𝑌) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
17163adant3 1132 . . . . 5 ((𝐺𝑋𝐻𝑌𝐹𝑍) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
1811, 17bitrd 279 . . . 4 ((𝐺𝑋𝐻𝑌𝐹𝑍) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
1918ralbidv 3155 . . 3 ((𝐺𝑋𝐻𝑌𝐹𝑍) → (∀𝑣𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))) ↔ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
2019anbi2d 630 . 2 ((𝐺𝑋𝐻𝑌𝐹𝑍) → ((𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣)))) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
213, 20bitrd 279 1 ((𝐺𝑋𝐻𝑌𝐹𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  {crab 3395  wss 3902   class class class wbr 5091  dom cdm 5616  cima 5619  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Vtxcvtx 28972  iEdgciedg 28973   ClNeighbVtx cclnbgr 47848   ISubGr cisubgr 47890  𝑔𝑟 cgric 47906   GraphLocIso cgrlim 48006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-1o 8385  df-map 8752  df-vtx 28974  df-iedg 28975  df-clnbgr 47849  df-isubgr 47891  df-grim 47908  df-gric 47911  df-grlim 48008
This theorem is referenced by:  grlimprop2  48016  uspgrlim  48022  dfgrlic3  48040
  Copyright terms: Public domain W3C validator