|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isgrlim2 | Structured version Visualization version GIF version | ||
| Description: A local isomorphism of graphs is a bijection between their vertices that preserves neighborhoods. Definitions expanded. (Contributed by AV, 29-May-2025.) | 
| Ref | Expression | 
|---|---|
| isgrlim.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| isgrlim.w | ⊢ 𝑊 = (Vtx‘𝐻) | 
| isgrlim2.n | ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) | 
| isgrlim2.m | ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) | 
| isgrlim2.i | ⊢ 𝐼 = (iEdg‘𝐺) | 
| isgrlim2.j | ⊢ 𝐽 = (iEdg‘𝐻) | 
| isgrlim2.k | ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} | 
| isgrlim2.l | ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} | 
| Ref | Expression | 
|---|---|
| isgrlim2 | ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isgrlim.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | isgrlim.w | . . 3 ⊢ 𝑊 = (Vtx‘𝐻) | |
| 3 | 1, 2 | isgrlim 47949 | . 2 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣)))))) | 
| 4 | isgrlim2.n | . . . . . . . . 9 ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) | |
| 5 | 4 | eqcomi 2746 | . . . . . . . 8 ⊢ (𝐺 ClNeighbVtx 𝑣) = 𝑁 | 
| 6 | 5 | oveq2i 7442 | . . . . . . 7 ⊢ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) = (𝐺 ISubGr 𝑁) | 
| 7 | isgrlim2.m | . . . . . . . . 9 ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) | |
| 8 | 7 | eqcomi 2746 | . . . . . . . 8 ⊢ (𝐻 ClNeighbVtx (𝐹‘𝑣)) = 𝑀 | 
| 9 | 8 | oveq2i 7442 | . . . . . . 7 ⊢ (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))) = (𝐻 ISubGr 𝑀) | 
| 10 | 6, 9 | breq12i 5152 | . . . . . 6 ⊢ ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))) ↔ (𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀)) | 
| 11 | 10 | a1i 11 | . . . . 5 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))) ↔ (𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀))) | 
| 12 | isgrlim2.i | . . . . . . 7 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 13 | isgrlim2.j | . . . . . . 7 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 14 | isgrlim2.k | . . . . . . 7 ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} | |
| 15 | isgrlim2.l | . . . . . . 7 ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} | |
| 16 | 12, 13, 4, 7, 14, 15 | clnbgrisubgrgrim 47900 | . . . . . 6 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) | 
| 17 | 16 | 3adant3 1133 | . . . . 5 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) | 
| 18 | 11, 17 | bitrd 279 | . . . 4 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) | 
| 19 | 18 | ralbidv 3178 | . . 3 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))) ↔ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) | 
| 20 | 19 | anbi2d 630 | . 2 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → ((𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣)))) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) | 
| 21 | 3, 20 | bitrd 279 | 1 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3061 {crab 3436 ⊆ wss 3951 class class class wbr 5143 dom cdm 5685 “ cima 5688 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 Vtxcvtx 29013 iEdgciedg 29014 ClNeighbVtx cclnbgr 47805 ISubGr cisubgr 47846 ≃𝑔𝑟 cgric 47862 GraphLocIso cgrlim 47943 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-1o 8506 df-map 8868 df-vtx 29015 df-iedg 29016 df-clnbgr 47806 df-isubgr 47847 df-grim 47864 df-gric 47867 df-grlim 47945 | 
| This theorem is referenced by: grlimprop2 47953 uspgrlim 47959 dfgrlic3 47970 | 
| Copyright terms: Public domain | W3C validator |