| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isgrlim2 | Structured version Visualization version GIF version | ||
| Description: A local isomorphism of graphs is a bijection between their vertices that preserves neighborhoods. Definitions expanded. (Contributed by AV, 29-May-2025.) |
| Ref | Expression |
|---|---|
| isgrlim.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isgrlim.w | ⊢ 𝑊 = (Vtx‘𝐻) |
| isgrlim2.n | ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) |
| isgrlim2.m | ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) |
| isgrlim2.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| isgrlim2.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| isgrlim2.k | ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} |
| isgrlim2.l | ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} |
| Ref | Expression |
|---|---|
| isgrlim2 | ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrlim.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | isgrlim.w | . . 3 ⊢ 𝑊 = (Vtx‘𝐻) | |
| 3 | 1, 2 | isgrlim 48106 | . 2 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣)))))) |
| 4 | isgrlim2.n | . . . . . . . . 9 ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) | |
| 5 | 4 | eqcomi 2742 | . . . . . . . 8 ⊢ (𝐺 ClNeighbVtx 𝑣) = 𝑁 |
| 6 | 5 | oveq2i 7363 | . . . . . . 7 ⊢ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) = (𝐺 ISubGr 𝑁) |
| 7 | isgrlim2.m | . . . . . . . . 9 ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) | |
| 8 | 7 | eqcomi 2742 | . . . . . . . 8 ⊢ (𝐻 ClNeighbVtx (𝐹‘𝑣)) = 𝑀 |
| 9 | 8 | oveq2i 7363 | . . . . . . 7 ⊢ (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))) = (𝐻 ISubGr 𝑀) |
| 10 | 6, 9 | breq12i 5102 | . . . . . 6 ⊢ ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))) ↔ (𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀)) |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))) ↔ (𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀))) |
| 12 | isgrlim2.i | . . . . . . 7 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 13 | isgrlim2.j | . . . . . . 7 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 14 | isgrlim2.k | . . . . . . 7 ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} | |
| 15 | isgrlim2.l | . . . . . . 7 ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} | |
| 16 | 12, 13, 4, 7, 14, 15 | clnbgrisubgrgrim 48056 | . . . . . 6 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 17 | 16 | 3adant3 1132 | . . . . 5 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 18 | 11, 17 | bitrd 279 | . . . 4 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 19 | 18 | ralbidv 3156 | . . 3 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))) ↔ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 20 | 19 | anbi2d 630 | . 2 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → ((𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣)))) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| 21 | 3, 20 | bitrd 279 | 1 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∀wral 3048 {crab 3396 ⊆ wss 3898 class class class wbr 5093 dom cdm 5619 “ cima 5622 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 Vtxcvtx 28976 iEdgciedg 28977 ClNeighbVtx cclnbgr 47942 ISubGr cisubgr 47984 ≃𝑔𝑟 cgric 48000 GraphLocIso cgrlim 48100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-1o 8391 df-map 8758 df-vtx 28978 df-iedg 28979 df-clnbgr 47943 df-isubgr 47985 df-grim 48002 df-gric 48005 df-grlim 48102 |
| This theorem is referenced by: grlimprop2 48110 uspgrlim 48116 dfgrlic3 48134 |
| Copyright terms: Public domain | W3C validator |