| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isgrlim2 | Structured version Visualization version GIF version | ||
| Description: A local isomorphism of graphs is a bijection between their vertices that preserves neighborhoods. Definitions expanded. (Contributed by AV, 29-May-2025.) |
| Ref | Expression |
|---|---|
| isgrlim.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isgrlim.w | ⊢ 𝑊 = (Vtx‘𝐻) |
| isgrlim2.n | ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) |
| isgrlim2.m | ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) |
| isgrlim2.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| isgrlim2.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| isgrlim2.k | ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} |
| isgrlim2.l | ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} |
| Ref | Expression |
|---|---|
| isgrlim2 | ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrlim.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | isgrlim.w | . . 3 ⊢ 𝑊 = (Vtx‘𝐻) | |
| 3 | 1, 2 | isgrlim 47967 | . 2 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣)))))) |
| 4 | isgrlim2.n | . . . . . . . . 9 ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) | |
| 5 | 4 | eqcomi 2738 | . . . . . . . 8 ⊢ (𝐺 ClNeighbVtx 𝑣) = 𝑁 |
| 6 | 5 | oveq2i 7364 | . . . . . . 7 ⊢ (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) = (𝐺 ISubGr 𝑁) |
| 7 | isgrlim2.m | . . . . . . . . 9 ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) | |
| 8 | 7 | eqcomi 2738 | . . . . . . . 8 ⊢ (𝐻 ClNeighbVtx (𝐹‘𝑣)) = 𝑀 |
| 9 | 8 | oveq2i 7364 | . . . . . . 7 ⊢ (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))) = (𝐻 ISubGr 𝑀) |
| 10 | 6, 9 | breq12i 5104 | . . . . . 6 ⊢ ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))) ↔ (𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀)) |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))) ↔ (𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀))) |
| 12 | isgrlim2.i | . . . . . . 7 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 13 | isgrlim2.j | . . . . . . 7 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 14 | isgrlim2.k | . . . . . . 7 ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} | |
| 15 | isgrlim2.l | . . . . . . 7 ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} | |
| 16 | 12, 13, 4, 7, 14, 15 | clnbgrisubgrgrim 47917 | . . . . . 6 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 17 | 16 | 3adant3 1132 | . . . . 5 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 18 | 11, 17 | bitrd 279 | . . . 4 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 19 | 18 | ralbidv 3152 | . . 3 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))) ↔ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 20 | 19 | anbi2d 630 | . 2 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → ((𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣)))) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| 21 | 3, 20 | bitrd 279 | 1 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 {crab 3396 ⊆ wss 3905 class class class wbr 5095 dom cdm 5623 “ cima 5626 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 Vtxcvtx 28959 iEdgciedg 28960 ClNeighbVtx cclnbgr 47803 ISubGr cisubgr 47845 ≃𝑔𝑟 cgric 47861 GraphLocIso cgrlim 47961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-1o 8395 df-map 8762 df-vtx 28961 df-iedg 28962 df-clnbgr 47804 df-isubgr 47846 df-grim 47863 df-gric 47866 df-grlim 47963 |
| This theorem is referenced by: grlimprop2 47971 uspgrlim 47977 dfgrlic3 47995 |
| Copyright terms: Public domain | W3C validator |