Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isgrlim2 Structured version   Visualization version   GIF version

Theorem isgrlim2 47950
Description: A local isomorphism of graphs is a bijection between their vertices that preserves neighborhoods. Definitions expanded. (Contributed by AV, 29-May-2025.)
Hypotheses
Ref Expression
isgrlim.v 𝑉 = (Vtx‘𝐺)
isgrlim.w 𝑊 = (Vtx‘𝐻)
isgrlim2.n 𝑁 = (𝐺 ClNeighbVtx 𝑣)
isgrlim2.m 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑣))
isgrlim2.i 𝐼 = (iEdg‘𝐺)
isgrlim2.j 𝐽 = (iEdg‘𝐻)
isgrlim2.k 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
isgrlim2.l 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
Assertion
Ref Expression
isgrlim2 ((𝐺𝑋𝐻𝑌𝐹𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
Distinct variable groups:   𝑓,𝐹,𝑔,𝑣   𝑓,𝐺,𝑔,𝑣   𝑓,𝐻,𝑔,𝑣   𝑣,𝑉   𝑓,𝑋,𝑔   𝑓,𝑌,𝑔   𝑓,𝑍,𝑔   𝑖,𝐺   𝑥,𝐺   𝑖,𝐻   𝑥,𝐻   𝑥,𝐼   𝑥,𝐽   𝑖,𝐾   𝑖,𝐿   𝑓,𝑀,𝑔,𝑖   𝑥,𝑀   𝑓,𝑁,𝑔,𝑖   𝑥,𝑁   𝑖,𝑋,𝑣   𝑖,𝑌,𝑣   𝑣,𝑍
Allowed substitution hints:   𝐹(𝑥,𝑖)   𝐼(𝑣,𝑓,𝑔,𝑖)   𝐽(𝑣,𝑓,𝑔,𝑖)   𝐾(𝑥,𝑣,𝑓,𝑔)   𝐿(𝑥,𝑣,𝑓,𝑔)   𝑀(𝑣)   𝑁(𝑣)   𝑉(𝑥,𝑓,𝑔,𝑖)   𝑊(𝑥,𝑣,𝑓,𝑔,𝑖)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥,𝑖)

Proof of Theorem isgrlim2
StepHypRef Expression
1 isgrlim.v . . 3 𝑉 = (Vtx‘𝐺)
2 isgrlim.w . . 3 𝑊 = (Vtx‘𝐻)
31, 2isgrlim 47949 . 2 ((𝐺𝑋𝐻𝑌𝐹𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))))))
4 isgrlim2.n . . . . . . . . 9 𝑁 = (𝐺 ClNeighbVtx 𝑣)
54eqcomi 2746 . . . . . . . 8 (𝐺 ClNeighbVtx 𝑣) = 𝑁
65oveq2i 7442 . . . . . . 7 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) = (𝐺 ISubGr 𝑁)
7 isgrlim2.m . . . . . . . . 9 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑣))
87eqcomi 2746 . . . . . . . 8 (𝐻 ClNeighbVtx (𝐹𝑣)) = 𝑀
98oveq2i 7442 . . . . . . 7 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))) = (𝐻 ISubGr 𝑀)
106, 9breq12i 5152 . . . . . 6 ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))) ↔ (𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀))
1110a1i 11 . . . . 5 ((𝐺𝑋𝐻𝑌𝐹𝑍) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))) ↔ (𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀)))
12 isgrlim2.i . . . . . . 7 𝐼 = (iEdg‘𝐺)
13 isgrlim2.j . . . . . . 7 𝐽 = (iEdg‘𝐻)
14 isgrlim2.k . . . . . . 7 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
15 isgrlim2.l . . . . . . 7 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
1612, 13, 4, 7, 14, 15clnbgrisubgrgrim 47900 . . . . . 6 ((𝐺𝑋𝐻𝑌) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
17163adant3 1133 . . . . 5 ((𝐺𝑋𝐻𝑌𝐹𝑍) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
1811, 17bitrd 279 . . . 4 ((𝐺𝑋𝐻𝑌𝐹𝑍) → ((𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
1918ralbidv 3178 . . 3 ((𝐺𝑋𝐻𝑌𝐹𝑍) → (∀𝑣𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣))) ↔ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
2019anbi2d 630 . 2 ((𝐺𝑋𝐻𝑌𝐹𝑍) → ((𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣)))) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
213, 20bitrd 279 1 ((𝐺𝑋𝐻𝑌𝐹𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wral 3061  {crab 3436  wss 3951   class class class wbr 5143  dom cdm 5685  cima 5688  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  Vtxcvtx 29013  iEdgciedg 29014   ClNeighbVtx cclnbgr 47805   ISubGr cisubgr 47846  𝑔𝑟 cgric 47862   GraphLocIso cgrlim 47943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-1o 8506  df-map 8868  df-vtx 29015  df-iedg 29016  df-clnbgr 47806  df-isubgr 47847  df-grim 47864  df-gric 47867  df-grlim 47945
This theorem is referenced by:  grlimprop2  47953  uspgrlim  47959  dfgrlic3  47970
  Copyright terms: Public domain W3C validator