MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maxlp Structured version   Visualization version   GIF version

Theorem maxlp 22279
Description: A point is a limit point of the whole space iff the singleton of the point is not open. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
maxlp (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑃𝑋 ∧ ¬ {𝑃} ∈ 𝐽)))

Proof of Theorem maxlp
StepHypRef Expression
1 ssid 3947 . . . . 5 𝑋𝑋
2 lpfval.1 . . . . . 6 𝑋 = 𝐽
32lpss 22274 . . . . 5 ((𝐽 ∈ Top ∧ 𝑋𝑋) → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋)
41, 3mpan2 687 . . . 4 (𝐽 ∈ Top → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋)
54sseld 3924 . . 3 (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) → 𝑃𝑋))
65pm4.71rd 562 . 2 (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑃𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑋))))
7 simpl 482 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → 𝐽 ∈ Top)
82islp 22272 . . . . 5 ((𝐽 ∈ Top ∧ 𝑋𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ {𝑃}))))
97, 1, 8sylancl 585 . . . 4 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ {𝑃}))))
10 snssi 4746 . . . . . 6 (𝑃𝑋 → {𝑃} ⊆ 𝑋)
112clsdif 22185 . . . . . 6 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ {𝑃})) = (𝑋 ∖ ((int‘𝐽)‘{𝑃})))
1210, 11sylan2 592 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → ((cls‘𝐽)‘(𝑋 ∖ {𝑃})) = (𝑋 ∖ ((int‘𝐽)‘{𝑃})))
1312eleq2d 2825 . . . 4 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ {𝑃})) ↔ 𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃}))))
14 eldif 3901 . . . . . . 7 (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ (𝑃𝑋 ∧ ¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃})))
1514baib 535 . . . . . 6 (𝑃𝑋 → (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ ¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃})))
1615adantl 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ ¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃})))
17 snssi 4746 . . . . . . . . . 10 (𝑃 ∈ ((int‘𝐽)‘{𝑃}) → {𝑃} ⊆ ((int‘𝐽)‘{𝑃}))
1817adantl 481 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → {𝑃} ⊆ ((int‘𝐽)‘{𝑃}))
192ntrss2 22189 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → ((int‘𝐽)‘{𝑃}) ⊆ {𝑃})
2010, 19sylan2 592 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑃𝑋) → ((int‘𝐽)‘{𝑃}) ⊆ {𝑃})
2120adantr 480 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → ((int‘𝐽)‘{𝑃}) ⊆ {𝑃})
2218, 21eqssd 3942 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → {𝑃} = ((int‘𝐽)‘{𝑃}))
232ntropn 22181 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → ((int‘𝐽)‘{𝑃}) ∈ 𝐽)
2410, 23sylan2 592 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑃𝑋) → ((int‘𝐽)‘{𝑃}) ∈ 𝐽)
2524adantr 480 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → ((int‘𝐽)‘{𝑃}) ∈ 𝐽)
2622, 25eqeltrd 2840 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → {𝑃} ∈ 𝐽)
27 snidg 4600 . . . . . . . . 9 (𝑃𝑋𝑃 ∈ {𝑃})
2827ad2antlr 723 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ {𝑃} ∈ 𝐽) → 𝑃 ∈ {𝑃})
29 isopn3i 22214 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝑃} ∈ 𝐽) → ((int‘𝐽)‘{𝑃}) = {𝑃})
3029adantlr 711 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ {𝑃} ∈ 𝐽) → ((int‘𝐽)‘{𝑃}) = {𝑃})
3128, 30eleqtrrd 2843 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ {𝑃} ∈ 𝐽) → 𝑃 ∈ ((int‘𝐽)‘{𝑃}))
3226, 31impbida 797 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ ((int‘𝐽)‘{𝑃}) ↔ {𝑃} ∈ 𝐽))
3332notbid 317 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃}) ↔ ¬ {𝑃} ∈ 𝐽))
3416, 33bitrd 278 . . . 4 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ ¬ {𝑃} ∈ 𝐽))
359, 13, 343bitrd 304 . . 3 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ ¬ {𝑃} ∈ 𝐽))
3635pm5.32da 578 . 2 (𝐽 ∈ Top → ((𝑃𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑋)) ↔ (𝑃𝑋 ∧ ¬ {𝑃} ∈ 𝐽)))
376, 36bitrd 278 1 (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑃𝑋 ∧ ¬ {𝑃} ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  cdif 3888  wss 3891  {csn 4566   cuni 4844  cfv 6430  Topctop 22023  intcnt 22149  clsccl 22150  limPtclp 22266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-top 22024  df-cld 22151  df-ntr 22152  df-cls 22153  df-lp 22268
This theorem is referenced by:  isperf3  22285
  Copyright terms: Public domain W3C validator