MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maxlp Structured version   Visualization version   GIF version

Theorem maxlp 22642
Description: A point is a limit point of the whole space iff the singleton of the point is not open. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
maxlp (𝐽 ∈ Top β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹) ↔ (𝑃 ∈ 𝑋 ∧ Β¬ {𝑃} ∈ 𝐽)))

Proof of Theorem maxlp
StepHypRef Expression
1 ssid 4003 . . . . 5 𝑋 βŠ† 𝑋
2 lpfval.1 . . . . . 6 𝑋 = βˆͺ 𝐽
32lpss 22637 . . . . 5 ((𝐽 ∈ Top ∧ 𝑋 βŠ† 𝑋) β†’ ((limPtβ€˜π½)β€˜π‘‹) βŠ† 𝑋)
41, 3mpan2 689 . . . 4 (𝐽 ∈ Top β†’ ((limPtβ€˜π½)β€˜π‘‹) βŠ† 𝑋)
54sseld 3980 . . 3 (𝐽 ∈ Top β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹) β†’ 𝑃 ∈ 𝑋))
65pm4.71rd 563 . 2 (𝐽 ∈ Top β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹) ↔ (𝑃 ∈ 𝑋 ∧ 𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹))))
7 simpl 483 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ 𝐽 ∈ Top)
82islp 22635 . . . . 5 ((𝐽 ∈ Top ∧ 𝑋 βŠ† 𝑋) β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹) ↔ 𝑃 ∈ ((clsβ€˜π½)β€˜(𝑋 βˆ– {𝑃}))))
97, 1, 8sylancl 586 . . . 4 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹) ↔ 𝑃 ∈ ((clsβ€˜π½)β€˜(𝑋 βˆ– {𝑃}))))
10 snssi 4810 . . . . . 6 (𝑃 ∈ 𝑋 β†’ {𝑃} βŠ† 𝑋)
112clsdif 22548 . . . . . 6 ((𝐽 ∈ Top ∧ {𝑃} βŠ† 𝑋) β†’ ((clsβ€˜π½)β€˜(𝑋 βˆ– {𝑃})) = (𝑋 βˆ– ((intβ€˜π½)β€˜{𝑃})))
1210, 11sylan2 593 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ ((clsβ€˜π½)β€˜(𝑋 βˆ– {𝑃})) = (𝑋 βˆ– ((intβ€˜π½)β€˜{𝑃})))
1312eleq2d 2819 . . . 4 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((clsβ€˜π½)β€˜(𝑋 βˆ– {𝑃})) ↔ 𝑃 ∈ (𝑋 βˆ– ((intβ€˜π½)β€˜{𝑃}))))
14 eldif 3957 . . . . . . 7 (𝑃 ∈ (𝑋 βˆ– ((intβ€˜π½)β€˜{𝑃})) ↔ (𝑃 ∈ 𝑋 ∧ Β¬ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃})))
1514baib 536 . . . . . 6 (𝑃 ∈ 𝑋 β†’ (𝑃 ∈ (𝑋 βˆ– ((intβ€˜π½)β€˜{𝑃})) ↔ Β¬ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃})))
1615adantl 482 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ (𝑋 βˆ– ((intβ€˜π½)β€˜{𝑃})) ↔ Β¬ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃})))
17 snssi 4810 . . . . . . . . . 10 (𝑃 ∈ ((intβ€˜π½)β€˜{𝑃}) β†’ {𝑃} βŠ† ((intβ€˜π½)β€˜{𝑃}))
1817adantl 482 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃})) β†’ {𝑃} βŠ† ((intβ€˜π½)β€˜{𝑃}))
192ntrss2 22552 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ {𝑃} βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜{𝑃}) βŠ† {𝑃})
2010, 19sylan2 593 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ ((intβ€˜π½)β€˜{𝑃}) βŠ† {𝑃})
2120adantr 481 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃})) β†’ ((intβ€˜π½)β€˜{𝑃}) βŠ† {𝑃})
2218, 21eqssd 3998 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃})) β†’ {𝑃} = ((intβ€˜π½)β€˜{𝑃}))
232ntropn 22544 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ {𝑃} βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜{𝑃}) ∈ 𝐽)
2410, 23sylan2 593 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ ((intβ€˜π½)β€˜{𝑃}) ∈ 𝐽)
2524adantr 481 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃})) β†’ ((intβ€˜π½)β€˜{𝑃}) ∈ 𝐽)
2622, 25eqeltrd 2833 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃})) β†’ {𝑃} ∈ 𝐽)
27 snidg 4661 . . . . . . . . 9 (𝑃 ∈ 𝑋 β†’ 𝑃 ∈ {𝑃})
2827ad2antlr 725 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ {𝑃} ∈ 𝐽) β†’ 𝑃 ∈ {𝑃})
29 isopn3i 22577 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝑃} ∈ 𝐽) β†’ ((intβ€˜π½)β€˜{𝑃}) = {𝑃})
3029adantlr 713 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ {𝑃} ∈ 𝐽) β†’ ((intβ€˜π½)β€˜{𝑃}) = {𝑃})
3128, 30eleqtrrd 2836 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ {𝑃} ∈ 𝐽) β†’ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃}))
3226, 31impbida 799 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((intβ€˜π½)β€˜{𝑃}) ↔ {𝑃} ∈ 𝐽))
3332notbid 317 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (Β¬ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃}) ↔ Β¬ {𝑃} ∈ 𝐽))
3416, 33bitrd 278 . . . 4 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ (𝑋 βˆ– ((intβ€˜π½)β€˜{𝑃})) ↔ Β¬ {𝑃} ∈ 𝐽))
359, 13, 343bitrd 304 . . 3 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹) ↔ Β¬ {𝑃} ∈ 𝐽))
3635pm5.32da 579 . 2 (𝐽 ∈ Top β†’ ((𝑃 ∈ 𝑋 ∧ 𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹)) ↔ (𝑃 ∈ 𝑋 ∧ Β¬ {𝑃} ∈ 𝐽)))
376, 36bitrd 278 1 (𝐽 ∈ Top β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹) ↔ (𝑃 ∈ 𝑋 ∧ Β¬ {𝑃} ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   βˆ– cdif 3944   βŠ† wss 3947  {csn 4627  βˆͺ cuni 4907  β€˜cfv 6540  Topctop 22386  intcnt 22512  clsccl 22513  limPtclp 22629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-top 22387  df-cld 22514  df-ntr 22515  df-cls 22516  df-lp 22631
This theorem is referenced by:  isperf3  22648
  Copyright terms: Public domain W3C validator