MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maxlp Structured version   Visualization version   GIF version

Theorem maxlp 21752
Description: A point is a limit point of the whole space iff the singleton of the point is not open. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
maxlp (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑃𝑋 ∧ ¬ {𝑃} ∈ 𝐽)))

Proof of Theorem maxlp
StepHypRef Expression
1 ssid 3937 . . . . 5 𝑋𝑋
2 lpfval.1 . . . . . 6 𝑋 = 𝐽
32lpss 21747 . . . . 5 ((𝐽 ∈ Top ∧ 𝑋𝑋) → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋)
41, 3mpan2 690 . . . 4 (𝐽 ∈ Top → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋)
54sseld 3914 . . 3 (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) → 𝑃𝑋))
65pm4.71rd 566 . 2 (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑃𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑋))))
7 simpl 486 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → 𝐽 ∈ Top)
82islp 21745 . . . . 5 ((𝐽 ∈ Top ∧ 𝑋𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ {𝑃}))))
97, 1, 8sylancl 589 . . . 4 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ {𝑃}))))
10 snssi 4701 . . . . . 6 (𝑃𝑋 → {𝑃} ⊆ 𝑋)
112clsdif 21658 . . . . . 6 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ {𝑃})) = (𝑋 ∖ ((int‘𝐽)‘{𝑃})))
1210, 11sylan2 595 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → ((cls‘𝐽)‘(𝑋 ∖ {𝑃})) = (𝑋 ∖ ((int‘𝐽)‘{𝑃})))
1312eleq2d 2875 . . . 4 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ {𝑃})) ↔ 𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃}))))
14 eldif 3891 . . . . . . 7 (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ (𝑃𝑋 ∧ ¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃})))
1514baib 539 . . . . . 6 (𝑃𝑋 → (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ ¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃})))
1615adantl 485 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ ¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃})))
17 snssi 4701 . . . . . . . . . 10 (𝑃 ∈ ((int‘𝐽)‘{𝑃}) → {𝑃} ⊆ ((int‘𝐽)‘{𝑃}))
1817adantl 485 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → {𝑃} ⊆ ((int‘𝐽)‘{𝑃}))
192ntrss2 21662 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → ((int‘𝐽)‘{𝑃}) ⊆ {𝑃})
2010, 19sylan2 595 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑃𝑋) → ((int‘𝐽)‘{𝑃}) ⊆ {𝑃})
2120adantr 484 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → ((int‘𝐽)‘{𝑃}) ⊆ {𝑃})
2218, 21eqssd 3932 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → {𝑃} = ((int‘𝐽)‘{𝑃}))
232ntropn 21654 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → ((int‘𝐽)‘{𝑃}) ∈ 𝐽)
2410, 23sylan2 595 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑃𝑋) → ((int‘𝐽)‘{𝑃}) ∈ 𝐽)
2524adantr 484 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → ((int‘𝐽)‘{𝑃}) ∈ 𝐽)
2622, 25eqeltrd 2890 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → {𝑃} ∈ 𝐽)
27 snidg 4559 . . . . . . . . 9 (𝑃𝑋𝑃 ∈ {𝑃})
2827ad2antlr 726 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ {𝑃} ∈ 𝐽) → 𝑃 ∈ {𝑃})
29 isopn3i 21687 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝑃} ∈ 𝐽) → ((int‘𝐽)‘{𝑃}) = {𝑃})
3029adantlr 714 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ {𝑃} ∈ 𝐽) → ((int‘𝐽)‘{𝑃}) = {𝑃})
3128, 30eleqtrrd 2893 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ {𝑃} ∈ 𝐽) → 𝑃 ∈ ((int‘𝐽)‘{𝑃}))
3226, 31impbida 800 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ ((int‘𝐽)‘{𝑃}) ↔ {𝑃} ∈ 𝐽))
3332notbid 321 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃}) ↔ ¬ {𝑃} ∈ 𝐽))
3416, 33bitrd 282 . . . 4 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ ¬ {𝑃} ∈ 𝐽))
359, 13, 343bitrd 308 . . 3 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ ¬ {𝑃} ∈ 𝐽))
3635pm5.32da 582 . 2 (𝐽 ∈ Top → ((𝑃𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑋)) ↔ (𝑃𝑋 ∧ ¬ {𝑃} ∈ 𝐽)))
376, 36bitrd 282 1 (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑃𝑋 ∧ ¬ {𝑃} ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  cdif 3878  wss 3881  {csn 4525   cuni 4800  cfv 6324  Topctop 21498  intcnt 21622  clsccl 21623  limPtclp 21739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-top 21499  df-cld 21624  df-ntr 21625  df-cls 21626  df-lp 21741
This theorem is referenced by:  isperf3  21758
  Copyright terms: Public domain W3C validator