Proof of Theorem maxlp
Step | Hyp | Ref
| Expression |
1 | | ssid 3948 |
. . . . 5
⊢ 𝑋 ⊆ 𝑋 |
2 | | lpfval.1 |
. . . . . 6
⊢ 𝑋 = ∪
𝐽 |
3 | 2 | lpss 22342 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋) |
4 | 1, 3 | mpan2 689 |
. . . 4
⊢ (𝐽 ∈ Top →
((limPt‘𝐽)‘𝑋) ⊆ 𝑋) |
5 | 4 | sseld 3925 |
. . 3
⊢ (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) → 𝑃 ∈ 𝑋)) |
6 | 5 | pm4.71rd 564 |
. 2
⊢ (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑃 ∈ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑋)))) |
7 | | simpl 484 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → 𝐽 ∈ Top) |
8 | 2 | islp 22340 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ {𝑃})))) |
9 | 7, 1, 8 | sylancl 587 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ {𝑃})))) |
10 | | snssi 4747 |
. . . . . 6
⊢ (𝑃 ∈ 𝑋 → {𝑃} ⊆ 𝑋) |
11 | 2 | clsdif 22253 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ {𝑃})) = (𝑋 ∖ ((int‘𝐽)‘{𝑃}))) |
12 | 10, 11 | sylan2 594 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ {𝑃})) = (𝑋 ∖ ((int‘𝐽)‘{𝑃}))) |
13 | 12 | eleq2d 2822 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ {𝑃})) ↔ 𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})))) |
14 | | eldif 3902 |
. . . . . . 7
⊢ (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ (𝑃 ∈ 𝑋 ∧ ¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃}))) |
15 | 14 | baib 537 |
. . . . . 6
⊢ (𝑃 ∈ 𝑋 → (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ ¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃}))) |
16 | 15 | adantl 483 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ ¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃}))) |
17 | | snssi 4747 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ((int‘𝐽)‘{𝑃}) → {𝑃} ⊆ ((int‘𝐽)‘{𝑃})) |
18 | 17 | adantl 483 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → {𝑃} ⊆ ((int‘𝐽)‘{𝑃})) |
19 | 2 | ntrss2 22257 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → ((int‘𝐽)‘{𝑃}) ⊆ {𝑃}) |
20 | 10, 19 | sylan2 594 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → ((int‘𝐽)‘{𝑃}) ⊆ {𝑃}) |
21 | 20 | adantr 482 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → ((int‘𝐽)‘{𝑃}) ⊆ {𝑃}) |
22 | 18, 21 | eqssd 3943 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → {𝑃} = ((int‘𝐽)‘{𝑃})) |
23 | 2 | ntropn 22249 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → ((int‘𝐽)‘{𝑃}) ∈ 𝐽) |
24 | 10, 23 | sylan2 594 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → ((int‘𝐽)‘{𝑃}) ∈ 𝐽) |
25 | 24 | adantr 482 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → ((int‘𝐽)‘{𝑃}) ∈ 𝐽) |
26 | 22, 25 | eqeltrd 2837 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → {𝑃} ∈ 𝐽) |
27 | | snidg 4599 |
. . . . . . . . 9
⊢ (𝑃 ∈ 𝑋 → 𝑃 ∈ {𝑃}) |
28 | 27 | ad2antlr 725 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ {𝑃} ∈ 𝐽) → 𝑃 ∈ {𝑃}) |
29 | | isopn3i 22282 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ {𝑃} ∈ 𝐽) → ((int‘𝐽)‘{𝑃}) = {𝑃}) |
30 | 29 | adantlr 713 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ {𝑃} ∈ 𝐽) → ((int‘𝐽)‘{𝑃}) = {𝑃}) |
31 | 28, 30 | eleqtrrd 2840 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ {𝑃} ∈ 𝐽) → 𝑃 ∈ ((int‘𝐽)‘{𝑃})) |
32 | 26, 31 | impbida 799 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((int‘𝐽)‘{𝑃}) ↔ {𝑃} ∈ 𝐽)) |
33 | 32 | notbid 318 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃}) ↔ ¬ {𝑃} ∈ 𝐽)) |
34 | 16, 33 | bitrd 279 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ ¬ {𝑃} ∈ 𝐽)) |
35 | 9, 13, 34 | 3bitrd 305 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ ¬ {𝑃} ∈ 𝐽)) |
36 | 35 | pm5.32da 580 |
. 2
⊢ (𝐽 ∈ Top → ((𝑃 ∈ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑋)) ↔ (𝑃 ∈ 𝑋 ∧ ¬ {𝑃} ∈ 𝐽))) |
37 | 6, 36 | bitrd 279 |
1
⊢ (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑃 ∈ 𝑋 ∧ ¬ {𝑃} ∈ 𝐽))) |