MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maxlp Structured version   Visualization version   GIF version

Theorem maxlp 23055
Description: A point is a limit point of the whole space iff the singleton of the point is not open. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
maxlp (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑃𝑋 ∧ ¬ {𝑃} ∈ 𝐽)))

Proof of Theorem maxlp
StepHypRef Expression
1 ssid 3955 . . . . 5 𝑋𝑋
2 lpfval.1 . . . . . 6 𝑋 = 𝐽
32lpss 23050 . . . . 5 ((𝐽 ∈ Top ∧ 𝑋𝑋) → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋)
41, 3mpan2 691 . . . 4 (𝐽 ∈ Top → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋)
54sseld 3931 . . 3 (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) → 𝑃𝑋))
65pm4.71rd 562 . 2 (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑃𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑋))))
7 simpl 482 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → 𝐽 ∈ Top)
82islp 23048 . . . . 5 ((𝐽 ∈ Top ∧ 𝑋𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ {𝑃}))))
97, 1, 8sylancl 586 . . . 4 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ {𝑃}))))
10 snssi 4758 . . . . . 6 (𝑃𝑋 → {𝑃} ⊆ 𝑋)
112clsdif 22961 . . . . . 6 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ {𝑃})) = (𝑋 ∖ ((int‘𝐽)‘{𝑃})))
1210, 11sylan2 593 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → ((cls‘𝐽)‘(𝑋 ∖ {𝑃})) = (𝑋 ∖ ((int‘𝐽)‘{𝑃})))
1312eleq2d 2815 . . . 4 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ {𝑃})) ↔ 𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃}))))
14 eldif 3910 . . . . . . 7 (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ (𝑃𝑋 ∧ ¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃})))
1514baib 535 . . . . . 6 (𝑃𝑋 → (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ ¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃})))
1615adantl 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ ¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃})))
17 snssi 4758 . . . . . . . . . 10 (𝑃 ∈ ((int‘𝐽)‘{𝑃}) → {𝑃} ⊆ ((int‘𝐽)‘{𝑃}))
1817adantl 481 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → {𝑃} ⊆ ((int‘𝐽)‘{𝑃}))
192ntrss2 22965 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → ((int‘𝐽)‘{𝑃}) ⊆ {𝑃})
2010, 19sylan2 593 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑃𝑋) → ((int‘𝐽)‘{𝑃}) ⊆ {𝑃})
2120adantr 480 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → ((int‘𝐽)‘{𝑃}) ⊆ {𝑃})
2218, 21eqssd 3950 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → {𝑃} = ((int‘𝐽)‘{𝑃}))
232ntropn 22957 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → ((int‘𝐽)‘{𝑃}) ∈ 𝐽)
2410, 23sylan2 593 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑃𝑋) → ((int‘𝐽)‘{𝑃}) ∈ 𝐽)
2524adantr 480 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → ((int‘𝐽)‘{𝑃}) ∈ 𝐽)
2622, 25eqeltrd 2829 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → {𝑃} ∈ 𝐽)
27 snidg 4611 . . . . . . . . 9 (𝑃𝑋𝑃 ∈ {𝑃})
2827ad2antlr 727 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ {𝑃} ∈ 𝐽) → 𝑃 ∈ {𝑃})
29 isopn3i 22990 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝑃} ∈ 𝐽) → ((int‘𝐽)‘{𝑃}) = {𝑃})
3029adantlr 715 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ {𝑃} ∈ 𝐽) → ((int‘𝐽)‘{𝑃}) = {𝑃})
3128, 30eleqtrrd 2832 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ {𝑃} ∈ 𝐽) → 𝑃 ∈ ((int‘𝐽)‘{𝑃}))
3226, 31impbida 800 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ ((int‘𝐽)‘{𝑃}) ↔ {𝑃} ∈ 𝐽))
3332notbid 318 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃}) ↔ ¬ {𝑃} ∈ 𝐽))
3416, 33bitrd 279 . . . 4 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ ¬ {𝑃} ∈ 𝐽))
359, 13, 343bitrd 305 . . 3 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ ¬ {𝑃} ∈ 𝐽))
3635pm5.32da 579 . 2 (𝐽 ∈ Top → ((𝑃𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑋)) ↔ (𝑃𝑋 ∧ ¬ {𝑃} ∈ 𝐽)))
376, 36bitrd 279 1 (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑃𝑋 ∧ ¬ {𝑃} ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  cdif 3897  wss 3900  {csn 4574   cuni 4857  cfv 6477  Topctop 22801  intcnt 22925  clsccl 22926  limPtclp 23042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-top 22802  df-cld 22927  df-ntr 22928  df-cls 22929  df-lp 23044
This theorem is referenced by:  isperf3  23061
  Copyright terms: Public domain W3C validator