MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maxlp Structured version   Visualization version   GIF version

Theorem maxlp 23081
Description: A point is a limit point of the whole space iff the singleton of the point is not open. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
maxlp (𝐽 ∈ Top β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹) ↔ (𝑃 ∈ 𝑋 ∧ Β¬ {𝑃} ∈ 𝐽)))

Proof of Theorem maxlp
StepHypRef Expression
1 ssid 4000 . . . . 5 𝑋 βŠ† 𝑋
2 lpfval.1 . . . . . 6 𝑋 = βˆͺ 𝐽
32lpss 23076 . . . . 5 ((𝐽 ∈ Top ∧ 𝑋 βŠ† 𝑋) β†’ ((limPtβ€˜π½)β€˜π‘‹) βŠ† 𝑋)
41, 3mpan2 689 . . . 4 (𝐽 ∈ Top β†’ ((limPtβ€˜π½)β€˜π‘‹) βŠ† 𝑋)
54sseld 3976 . . 3 (𝐽 ∈ Top β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹) β†’ 𝑃 ∈ 𝑋))
65pm4.71rd 561 . 2 (𝐽 ∈ Top β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹) ↔ (𝑃 ∈ 𝑋 ∧ 𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹))))
7 simpl 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ 𝐽 ∈ Top)
82islp 23074 . . . . 5 ((𝐽 ∈ Top ∧ 𝑋 βŠ† 𝑋) β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹) ↔ 𝑃 ∈ ((clsβ€˜π½)β€˜(𝑋 βˆ– {𝑃}))))
97, 1, 8sylancl 584 . . . 4 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹) ↔ 𝑃 ∈ ((clsβ€˜π½)β€˜(𝑋 βˆ– {𝑃}))))
10 snssi 4812 . . . . . 6 (𝑃 ∈ 𝑋 β†’ {𝑃} βŠ† 𝑋)
112clsdif 22987 . . . . . 6 ((𝐽 ∈ Top ∧ {𝑃} βŠ† 𝑋) β†’ ((clsβ€˜π½)β€˜(𝑋 βˆ– {𝑃})) = (𝑋 βˆ– ((intβ€˜π½)β€˜{𝑃})))
1210, 11sylan2 591 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ ((clsβ€˜π½)β€˜(𝑋 βˆ– {𝑃})) = (𝑋 βˆ– ((intβ€˜π½)β€˜{𝑃})))
1312eleq2d 2811 . . . 4 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((clsβ€˜π½)β€˜(𝑋 βˆ– {𝑃})) ↔ 𝑃 ∈ (𝑋 βˆ– ((intβ€˜π½)β€˜{𝑃}))))
14 eldif 3955 . . . . . . 7 (𝑃 ∈ (𝑋 βˆ– ((intβ€˜π½)β€˜{𝑃})) ↔ (𝑃 ∈ 𝑋 ∧ Β¬ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃})))
1514baib 534 . . . . . 6 (𝑃 ∈ 𝑋 β†’ (𝑃 ∈ (𝑋 βˆ– ((intβ€˜π½)β€˜{𝑃})) ↔ Β¬ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃})))
1615adantl 480 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ (𝑋 βˆ– ((intβ€˜π½)β€˜{𝑃})) ↔ Β¬ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃})))
17 snssi 4812 . . . . . . . . . 10 (𝑃 ∈ ((intβ€˜π½)β€˜{𝑃}) β†’ {𝑃} βŠ† ((intβ€˜π½)β€˜{𝑃}))
1817adantl 480 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃})) β†’ {𝑃} βŠ† ((intβ€˜π½)β€˜{𝑃}))
192ntrss2 22991 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ {𝑃} βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜{𝑃}) βŠ† {𝑃})
2010, 19sylan2 591 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ ((intβ€˜π½)β€˜{𝑃}) βŠ† {𝑃})
2120adantr 479 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃})) β†’ ((intβ€˜π½)β€˜{𝑃}) βŠ† {𝑃})
2218, 21eqssd 3995 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃})) β†’ {𝑃} = ((intβ€˜π½)β€˜{𝑃}))
232ntropn 22983 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ {𝑃} βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜{𝑃}) ∈ 𝐽)
2410, 23sylan2 591 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ ((intβ€˜π½)β€˜{𝑃}) ∈ 𝐽)
2524adantr 479 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃})) β†’ ((intβ€˜π½)β€˜{𝑃}) ∈ 𝐽)
2622, 25eqeltrd 2825 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃})) β†’ {𝑃} ∈ 𝐽)
27 snidg 4663 . . . . . . . . 9 (𝑃 ∈ 𝑋 β†’ 𝑃 ∈ {𝑃})
2827ad2antlr 725 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ {𝑃} ∈ 𝐽) β†’ 𝑃 ∈ {𝑃})
29 isopn3i 23016 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝑃} ∈ 𝐽) β†’ ((intβ€˜π½)β€˜{𝑃}) = {𝑃})
3029adantlr 713 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ {𝑃} ∈ 𝐽) β†’ ((intβ€˜π½)β€˜{𝑃}) = {𝑃})
3128, 30eleqtrrd 2828 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ {𝑃} ∈ 𝐽) β†’ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃}))
3226, 31impbida 799 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((intβ€˜π½)β€˜{𝑃}) ↔ {𝑃} ∈ 𝐽))
3332notbid 317 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (Β¬ 𝑃 ∈ ((intβ€˜π½)β€˜{𝑃}) ↔ Β¬ {𝑃} ∈ 𝐽))
3416, 33bitrd 278 . . . 4 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ (𝑋 βˆ– ((intβ€˜π½)β€˜{𝑃})) ↔ Β¬ {𝑃} ∈ 𝐽))
359, 13, 343bitrd 304 . . 3 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹) ↔ Β¬ {𝑃} ∈ 𝐽))
3635pm5.32da 577 . 2 (𝐽 ∈ Top β†’ ((𝑃 ∈ 𝑋 ∧ 𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹)) ↔ (𝑃 ∈ 𝑋 ∧ Β¬ {𝑃} ∈ 𝐽)))
376, 36bitrd 278 1 (𝐽 ∈ Top β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘‹) ↔ (𝑃 ∈ 𝑋 ∧ Β¬ {𝑃} ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098   βˆ– cdif 3942   βŠ† wss 3945  {csn 4629  βˆͺ cuni 4908  β€˜cfv 6547  Topctop 22825  intcnt 22951  clsccl 22952  limPtclp 23068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-top 22826  df-cld 22953  df-ntr 22954  df-cls 22955  df-lp 23070
This theorem is referenced by:  isperf3  23087
  Copyright terms: Public domain W3C validator