MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maxlp Structured version   Visualization version   GIF version

Theorem maxlp 23050
Description: A point is a limit point of the whole space iff the singleton of the point is not open. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
maxlp (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑃𝑋 ∧ ¬ {𝑃} ∈ 𝐽)))

Proof of Theorem maxlp
StepHypRef Expression
1 ssid 3960 . . . . 5 𝑋𝑋
2 lpfval.1 . . . . . 6 𝑋 = 𝐽
32lpss 23045 . . . . 5 ((𝐽 ∈ Top ∧ 𝑋𝑋) → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋)
41, 3mpan2 691 . . . 4 (𝐽 ∈ Top → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋)
54sseld 3936 . . 3 (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) → 𝑃𝑋))
65pm4.71rd 562 . 2 (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑃𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑋))))
7 simpl 482 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → 𝐽 ∈ Top)
82islp 23043 . . . . 5 ((𝐽 ∈ Top ∧ 𝑋𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ {𝑃}))))
97, 1, 8sylancl 586 . . . 4 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ {𝑃}))))
10 snssi 4762 . . . . . 6 (𝑃𝑋 → {𝑃} ⊆ 𝑋)
112clsdif 22956 . . . . . 6 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ {𝑃})) = (𝑋 ∖ ((int‘𝐽)‘{𝑃})))
1210, 11sylan2 593 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → ((cls‘𝐽)‘(𝑋 ∖ {𝑃})) = (𝑋 ∖ ((int‘𝐽)‘{𝑃})))
1312eleq2d 2814 . . . 4 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ {𝑃})) ↔ 𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃}))))
14 eldif 3915 . . . . . . 7 (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ (𝑃𝑋 ∧ ¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃})))
1514baib 535 . . . . . 6 (𝑃𝑋 → (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ ¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃})))
1615adantl 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ ¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃})))
17 snssi 4762 . . . . . . . . . 10 (𝑃 ∈ ((int‘𝐽)‘{𝑃}) → {𝑃} ⊆ ((int‘𝐽)‘{𝑃}))
1817adantl 481 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → {𝑃} ⊆ ((int‘𝐽)‘{𝑃}))
192ntrss2 22960 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → ((int‘𝐽)‘{𝑃}) ⊆ {𝑃})
2010, 19sylan2 593 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑃𝑋) → ((int‘𝐽)‘{𝑃}) ⊆ {𝑃})
2120adantr 480 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → ((int‘𝐽)‘{𝑃}) ⊆ {𝑃})
2218, 21eqssd 3955 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → {𝑃} = ((int‘𝐽)‘{𝑃}))
232ntropn 22952 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → ((int‘𝐽)‘{𝑃}) ∈ 𝐽)
2410, 23sylan2 593 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑃𝑋) → ((int‘𝐽)‘{𝑃}) ∈ 𝐽)
2524adantr 480 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → ((int‘𝐽)‘{𝑃}) ∈ 𝐽)
2622, 25eqeltrd 2828 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ 𝑃 ∈ ((int‘𝐽)‘{𝑃})) → {𝑃} ∈ 𝐽)
27 snidg 4614 . . . . . . . . 9 (𝑃𝑋𝑃 ∈ {𝑃})
2827ad2antlr 727 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ {𝑃} ∈ 𝐽) → 𝑃 ∈ {𝑃})
29 isopn3i 22985 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝑃} ∈ 𝐽) → ((int‘𝐽)‘{𝑃}) = {𝑃})
3029adantlr 715 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ {𝑃} ∈ 𝐽) → ((int‘𝐽)‘{𝑃}) = {𝑃})
3128, 30eleqtrrd 2831 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑃𝑋) ∧ {𝑃} ∈ 𝐽) → 𝑃 ∈ ((int‘𝐽)‘{𝑃}))
3226, 31impbida 800 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ ((int‘𝐽)‘{𝑃}) ↔ {𝑃} ∈ 𝐽))
3332notbid 318 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (¬ 𝑃 ∈ ((int‘𝐽)‘{𝑃}) ↔ ¬ {𝑃} ∈ 𝐽))
3416, 33bitrd 279 . . . 4 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ (𝑋 ∖ ((int‘𝐽)‘{𝑃})) ↔ ¬ {𝑃} ∈ 𝐽))
359, 13, 343bitrd 305 . . 3 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ ¬ {𝑃} ∈ 𝐽))
3635pm5.32da 579 . 2 (𝐽 ∈ Top → ((𝑃𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑋)) ↔ (𝑃𝑋 ∧ ¬ {𝑃} ∈ 𝐽)))
376, 36bitrd 279 1 (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑃𝑋 ∧ ¬ {𝑃} ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3902  wss 3905  {csn 4579   cuni 4861  cfv 6486  Topctop 22796  intcnt 22920  clsccl 22921  limPtclp 23037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-top 22797  df-cld 22922  df-ntr 22923  df-cls 22924  df-lp 23039
This theorem is referenced by:  isperf3  23056
  Copyright terms: Public domain W3C validator