![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fouriercnp | Structured version Visualization version GIF version |
Description: If 𝐹 is continuous at the point 𝑋, then its Fourier series at 𝑋, converges to (𝐹‘𝑋). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fouriercnp.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
fouriercnp.t | ⊢ 𝑇 = (2 · π) |
fouriercnp.per | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
fouriercnp.g | ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) |
fouriercnp.dmdv | ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) |
fouriercnp.dvcn | ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
fouriercnp.rlim | ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
fouriercnp.llim | ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
fouriercnp.j | ⊢ 𝐽 = (topGen‘ran (,)) |
fouriercnp.cnp | ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP 𝐽)‘𝑋)) |
fouriercnp.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
fouriercnp.b | ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
Ref | Expression |
---|---|
fouriercnp | ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fouriercnp.f | . . 3 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
2 | fouriercnp.t | . . 3 ⊢ 𝑇 = (2 · π) | |
3 | fouriercnp.per | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
4 | fouriercnp.g | . . 3 ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) | |
5 | fouriercnp.dmdv | . . 3 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) | |
6 | fouriercnp.dvcn | . . 3 ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) | |
7 | fouriercnp.rlim | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) | |
8 | fouriercnp.llim | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) | |
9 | fouriercnp.cnp | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP 𝐽)‘𝑋)) | |
10 | uniretop 24804 | . . . . . 6 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
11 | fouriercnp.j | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
12 | 11 | unieqi 4943 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ (topGen‘ran (,)) |
13 | 10, 12 | eqtr4i 2771 | . . . . 5 ⊢ ℝ = ∪ 𝐽 |
14 | 13 | cnprcl 23274 | . . . 4 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐽)‘𝑋) → 𝑋 ∈ ℝ) |
15 | 9, 14 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ) |
16 | limcresi 25940 | . . . 4 ⊢ (𝐹 limℂ 𝑋) ⊆ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) | |
17 | eqid 2740 | . . . . . . . . . . . 12 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
18 | 17 | tgioo2 24844 | . . . . . . . . . . 11 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
19 | 11, 18 | eqtri 2768 | . . . . . . . . . 10 ⊢ 𝐽 = ((TopOpen‘ℂfld) ↾t ℝ) |
20 | 19 | oveq2i 7459 | . . . . . . . . 9 ⊢ (𝐽 CnP 𝐽) = (𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ)) |
21 | 20 | fveq1i 6921 | . . . . . . . 8 ⊢ ((𝐽 CnP 𝐽)‘𝑋) = ((𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑋) |
22 | 9, 21 | eleqtrdi 2854 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑋)) |
23 | 17 | cnfldtop 24825 | . . . . . . . . 9 ⊢ (TopOpen‘ℂfld) ∈ Top |
24 | 23 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ Top) |
25 | ax-resscn 11241 | . . . . . . . . 9 ⊢ ℝ ⊆ ℂ | |
26 | 25 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ ⊆ ℂ) |
27 | unicntop 24827 | . . . . . . . . 9 ⊢ ℂ = ∪ (TopOpen‘ℂfld) | |
28 | 13, 27 | cnprest2 23319 | . . . . . . . 8 ⊢ (((TopOpen‘ℂfld) ∈ Top ∧ 𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋) ↔ 𝐹 ∈ ((𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑋))) |
29 | 24, 1, 26, 28 | syl3anc 1371 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋) ↔ 𝐹 ∈ ((𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑋))) |
30 | 22, 29 | mpbird 257 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋)) |
31 | 17, 19 | cnplimc 25942 | . . . . . . 7 ⊢ ((ℝ ⊆ ℂ ∧ 𝑋 ∈ ℝ) → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝑋) ∈ (𝐹 limℂ 𝑋)))) |
32 | 25, 15, 31 | sylancr 586 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝑋) ∈ (𝐹 limℂ 𝑋)))) |
33 | 30, 32 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝑋) ∈ (𝐹 limℂ 𝑋))) |
34 | 33 | simprd 495 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝐹 limℂ 𝑋)) |
35 | 16, 34 | sselid 4006 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
36 | limcresi 25940 | . . . 4 ⊢ (𝐹 limℂ 𝑋) ⊆ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) | |
37 | 36, 34 | sselid 4006 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
38 | fouriercnp.a | . . 3 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
39 | fouriercnp.b | . . 3 ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
40 | 1, 2, 3, 4, 5, 6, 7, 8, 15, 35, 37, 38, 39 | fourierd 46143 | . 2 ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐹‘𝑋) + (𝐹‘𝑋)) / 2)) |
41 | 1, 15 | ffvelcdmd 7119 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ℝ) |
42 | 41 | recnd 11318 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ℂ) |
43 | 42 | 2timesd 12536 | . . . 4 ⊢ (𝜑 → (2 · (𝐹‘𝑋)) = ((𝐹‘𝑋) + (𝐹‘𝑋))) |
44 | 43 | eqcomd 2746 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑋) + (𝐹‘𝑋)) = (2 · (𝐹‘𝑋))) |
45 | 44 | oveq1d 7463 | . 2 ⊢ (𝜑 → (((𝐹‘𝑋) + (𝐹‘𝑋)) / 2) = ((2 · (𝐹‘𝑋)) / 2)) |
46 | 2cnd 12371 | . . 3 ⊢ (𝜑 → 2 ∈ ℂ) | |
47 | 2ne0 12397 | . . . 4 ⊢ 2 ≠ 0 | |
48 | 47 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ≠ 0) |
49 | 42, 46, 48 | divcan3d 12075 | . 2 ⊢ (𝜑 → ((2 · (𝐹‘𝑋)) / 2) = (𝐹‘𝑋)) |
50 | 40, 45, 49 | 3eqtrd 2784 | 1 ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 ∪ cuni 4931 ↦ cmpt 5249 dom cdm 5700 ran crn 5701 ↾ cres 5702 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 ℂcc 11182 ℝcr 11183 0cc0 11184 + caddc 11187 · cmul 11189 +∞cpnf 11321 -∞cmnf 11322 -cneg 11521 / cdiv 11947 ℕcn 12293 2c2 12348 ℕ0cn0 12553 (,)cioo 13407 (,]cioc 13408 [,)cico 13409 Σcsu 15734 sincsin 16111 cosccos 16112 πcpi 16114 ↾t crest 17480 TopOpenctopn 17481 topGenctg 17497 ℂfldccnfld 21387 Topctop 22920 CnP ccnp 23254 –cn→ccncf 24921 ∫citg 25672 limℂ climc 25917 D cdv 25918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-symdif 4272 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 df-pi 16120 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-t1 23343 df-haus 23344 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-ovol 25518 df-vol 25519 df-mbf 25673 df-itg1 25674 df-itg2 25675 df-ibl 25676 df-itg 25677 df-0p 25724 df-ditg 25902 df-limc 25921 df-dv 25922 |
This theorem is referenced by: fouriercn 46153 |
Copyright terms: Public domain | W3C validator |