![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fouriercnp | Structured version Visualization version GIF version |
Description: If πΉ is continuous at the point π, then its Fourier series at π, converges to (πΉβπ). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fouriercnp.f | β’ (π β πΉ:ββΆβ) |
fouriercnp.t | β’ π = (2 Β· Ο) |
fouriercnp.per | β’ ((π β§ π₯ β β) β (πΉβ(π₯ + π)) = (πΉβπ₯)) |
fouriercnp.g | β’ πΊ = ((β D πΉ) βΎ (-Ο(,)Ο)) |
fouriercnp.dmdv | β’ (π β ((-Ο(,)Ο) β dom πΊ) β Fin) |
fouriercnp.dvcn | β’ (π β πΊ β (dom πΊβcnββ)) |
fouriercnp.rlim | β’ ((π β§ π₯ β ((-Ο[,)Ο) β dom πΊ)) β ((πΊ βΎ (π₯(,)+β)) limβ π₯) β β ) |
fouriercnp.llim | β’ ((π β§ π₯ β ((-Ο(,]Ο) β dom πΊ)) β ((πΊ βΎ (-β(,)π₯)) limβ π₯) β β ) |
fouriercnp.j | β’ π½ = (topGenβran (,)) |
fouriercnp.cnp | β’ (π β πΉ β ((π½ CnP π½)βπ)) |
fouriercnp.a | β’ π΄ = (π β β0 β¦ (β«(-Ο(,)Ο)((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯ / Ο)) |
fouriercnp.b | β’ π΅ = (π β β β¦ (β«(-Ο(,)Ο)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ / Ο)) |
Ref | Expression |
---|---|
fouriercnp | β’ (π β (((π΄β0) / 2) + Ξ£π β β (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) = (πΉβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fouriercnp.f | . . 3 β’ (π β πΉ:ββΆβ) | |
2 | fouriercnp.t | . . 3 β’ π = (2 Β· Ο) | |
3 | fouriercnp.per | . . 3 β’ ((π β§ π₯ β β) β (πΉβ(π₯ + π)) = (πΉβπ₯)) | |
4 | fouriercnp.g | . . 3 β’ πΊ = ((β D πΉ) βΎ (-Ο(,)Ο)) | |
5 | fouriercnp.dmdv | . . 3 β’ (π β ((-Ο(,)Ο) β dom πΊ) β Fin) | |
6 | fouriercnp.dvcn | . . 3 β’ (π β πΊ β (dom πΊβcnββ)) | |
7 | fouriercnp.rlim | . . 3 β’ ((π β§ π₯ β ((-Ο[,)Ο) β dom πΊ)) β ((πΊ βΎ (π₯(,)+β)) limβ π₯) β β ) | |
8 | fouriercnp.llim | . . 3 β’ ((π β§ π₯ β ((-Ο(,]Ο) β dom πΊ)) β ((πΊ βΎ (-β(,)π₯)) limβ π₯) β β ) | |
9 | fouriercnp.cnp | . . . 4 β’ (π β πΉ β ((π½ CnP π½)βπ)) | |
10 | uniretop 24278 | . . . . . 6 β’ β = βͺ (topGenβran (,)) | |
11 | fouriercnp.j | . . . . . . 7 β’ π½ = (topGenβran (,)) | |
12 | 11 | unieqi 4921 | . . . . . 6 β’ βͺ π½ = βͺ (topGenβran (,)) |
13 | 10, 12 | eqtr4i 2763 | . . . . 5 β’ β = βͺ π½ |
14 | 13 | cnprcl 22748 | . . . 4 β’ (πΉ β ((π½ CnP π½)βπ) β π β β) |
15 | 9, 14 | syl 17 | . . 3 β’ (π β π β β) |
16 | limcresi 25401 | . . . 4 β’ (πΉ limβ π) β ((πΉ βΎ (-β(,)π)) limβ π) | |
17 | eqid 2732 | . . . . . . . . . . . 12 β’ (TopOpenββfld) = (TopOpenββfld) | |
18 | 17 | tgioo2 24318 | . . . . . . . . . . 11 β’ (topGenβran (,)) = ((TopOpenββfld) βΎt β) |
19 | 11, 18 | eqtri 2760 | . . . . . . . . . 10 β’ π½ = ((TopOpenββfld) βΎt β) |
20 | 19 | oveq2i 7419 | . . . . . . . . 9 β’ (π½ CnP π½) = (π½ CnP ((TopOpenββfld) βΎt β)) |
21 | 20 | fveq1i 6892 | . . . . . . . 8 β’ ((π½ CnP π½)βπ) = ((π½ CnP ((TopOpenββfld) βΎt β))βπ) |
22 | 9, 21 | eleqtrdi 2843 | . . . . . . 7 β’ (π β πΉ β ((π½ CnP ((TopOpenββfld) βΎt β))βπ)) |
23 | 17 | cnfldtop 24299 | . . . . . . . . 9 β’ (TopOpenββfld) β Top |
24 | 23 | a1i 11 | . . . . . . . 8 β’ (π β (TopOpenββfld) β Top) |
25 | ax-resscn 11166 | . . . . . . . . 9 β’ β β β | |
26 | 25 | a1i 11 | . . . . . . . 8 β’ (π β β β β) |
27 | unicntop 24301 | . . . . . . . . 9 β’ β = βͺ (TopOpenββfld) | |
28 | 13, 27 | cnprest2 22793 | . . . . . . . 8 β’ (((TopOpenββfld) β Top β§ πΉ:ββΆβ β§ β β β) β (πΉ β ((π½ CnP (TopOpenββfld))βπ) β πΉ β ((π½ CnP ((TopOpenββfld) βΎt β))βπ))) |
29 | 24, 1, 26, 28 | syl3anc 1371 | . . . . . . 7 β’ (π β (πΉ β ((π½ CnP (TopOpenββfld))βπ) β πΉ β ((π½ CnP ((TopOpenββfld) βΎt β))βπ))) |
30 | 22, 29 | mpbird 256 | . . . . . 6 β’ (π β πΉ β ((π½ CnP (TopOpenββfld))βπ)) |
31 | 17, 19 | cnplimc 25403 | . . . . . . 7 β’ ((β β β β§ π β β) β (πΉ β ((π½ CnP (TopOpenββfld))βπ) β (πΉ:ββΆβ β§ (πΉβπ) β (πΉ limβ π)))) |
32 | 25, 15, 31 | sylancr 587 | . . . . . 6 β’ (π β (πΉ β ((π½ CnP (TopOpenββfld))βπ) β (πΉ:ββΆβ β§ (πΉβπ) β (πΉ limβ π)))) |
33 | 30, 32 | mpbid 231 | . . . . 5 β’ (π β (πΉ:ββΆβ β§ (πΉβπ) β (πΉ limβ π))) |
34 | 33 | simprd 496 | . . . 4 β’ (π β (πΉβπ) β (πΉ limβ π)) |
35 | 16, 34 | sselid 3980 | . . 3 β’ (π β (πΉβπ) β ((πΉ βΎ (-β(,)π)) limβ π)) |
36 | limcresi 25401 | . . . 4 β’ (πΉ limβ π) β ((πΉ βΎ (π(,)+β)) limβ π) | |
37 | 36, 34 | sselid 3980 | . . 3 β’ (π β (πΉβπ) β ((πΉ βΎ (π(,)+β)) limβ π)) |
38 | fouriercnp.a | . . 3 β’ π΄ = (π β β0 β¦ (β«(-Ο(,)Ο)((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯ / Ο)) | |
39 | fouriercnp.b | . . 3 β’ π΅ = (π β β β¦ (β«(-Ο(,)Ο)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ / Ο)) | |
40 | 1, 2, 3, 4, 5, 6, 7, 8, 15, 35, 37, 38, 39 | fourierd 44928 | . 2 β’ (π β (((π΄β0) / 2) + Ξ£π β β (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) = (((πΉβπ) + (πΉβπ)) / 2)) |
41 | 1, 15 | ffvelcdmd 7087 | . . . . . 6 β’ (π β (πΉβπ) β β) |
42 | 41 | recnd 11241 | . . . . 5 β’ (π β (πΉβπ) β β) |
43 | 42 | 2timesd 12454 | . . . 4 β’ (π β (2 Β· (πΉβπ)) = ((πΉβπ) + (πΉβπ))) |
44 | 43 | eqcomd 2738 | . . 3 β’ (π β ((πΉβπ) + (πΉβπ)) = (2 Β· (πΉβπ))) |
45 | 44 | oveq1d 7423 | . 2 β’ (π β (((πΉβπ) + (πΉβπ)) / 2) = ((2 Β· (πΉβπ)) / 2)) |
46 | 2cnd 12289 | . . 3 β’ (π β 2 β β) | |
47 | 2ne0 12315 | . . . 4 β’ 2 β 0 | |
48 | 47 | a1i 11 | . . 3 β’ (π β 2 β 0) |
49 | 42, 46, 48 | divcan3d 11994 | . 2 β’ (π β ((2 Β· (πΉβπ)) / 2) = (πΉβπ)) |
50 | 40, 45, 49 | 3eqtrd 2776 | 1 β’ (π β (((π΄β0) / 2) + Ξ£π β β (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) = (πΉβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 β cdif 3945 β wss 3948 β c0 4322 βͺ cuni 4908 β¦ cmpt 5231 dom cdm 5676 ran crn 5677 βΎ cres 5678 βΆwf 6539 βcfv 6543 (class class class)co 7408 Fincfn 8938 βcc 11107 βcr 11108 0cc0 11109 + caddc 11112 Β· cmul 11114 +βcpnf 11244 -βcmnf 11245 -cneg 11444 / cdiv 11870 βcn 12211 2c2 12266 β0cn0 12471 (,)cioo 13323 (,]cioc 13324 [,)cico 13325 Ξ£csu 15631 sincsin 16006 cosccos 16007 Οcpi 16009 βΎt crest 17365 TopOpenctopn 17366 topGenctg 17382 βfldccnfld 20943 Topctop 22394 CnP ccnp 22728 βcnβccncf 24391 β«citg 25134 limβ climc 25378 D cdv 25379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cc 10429 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-symdif 4242 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-ofr 7670 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-oadd 8469 df-omul 8470 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-dju 9895 df-card 9933 df-acn 9936 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-xnn0 12544 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-ioo 13327 df-ioc 13328 df-ico 13329 df-icc 13330 df-fz 13484 df-fzo 13627 df-fl 13756 df-mod 13834 df-seq 13966 df-exp 14027 df-fac 14233 df-bc 14262 df-hash 14290 df-shft 15013 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-limsup 15414 df-clim 15431 df-rlim 15432 df-sum 15632 df-ef 16010 df-sin 16012 df-cos 16013 df-pi 16015 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17367 df-topn 17368 df-0g 17386 df-gsum 17387 df-topgen 17388 df-pt 17389 df-prds 17392 df-xrs 17447 df-qtop 17452 df-imas 17453 df-xps 17455 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-mulg 18950 df-cntz 19180 df-cmn 19649 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-fbas 20940 df-fg 20941 df-cnfld 20944 df-top 22395 df-topon 22412 df-topsp 22434 df-bases 22448 df-cld 22522 df-ntr 22523 df-cls 22524 df-nei 22601 df-lp 22639 df-perf 22640 df-cn 22730 df-cnp 22731 df-t1 22817 df-haus 22818 df-cmp 22890 df-tx 23065 df-hmeo 23258 df-fil 23349 df-fm 23441 df-flim 23442 df-flf 23443 df-xms 23825 df-ms 23826 df-tms 23827 df-cncf 24393 df-ovol 24980 df-vol 24981 df-mbf 25135 df-itg1 25136 df-itg2 25137 df-ibl 25138 df-itg 25139 df-0p 25186 df-ditg 25363 df-limc 25382 df-dv 25383 |
This theorem is referenced by: fouriercn 44938 |
Copyright terms: Public domain | W3C validator |