![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fouriercnp | Structured version Visualization version GIF version |
Description: If 𝐹 is continuous at the point 𝑋, then its Fourier series at 𝑋, converges to (𝐹‘𝑋). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fouriercnp.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
fouriercnp.t | ⊢ 𝑇 = (2 · π) |
fouriercnp.per | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
fouriercnp.g | ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) |
fouriercnp.dmdv | ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) |
fouriercnp.dvcn | ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
fouriercnp.rlim | ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
fouriercnp.llim | ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
fouriercnp.j | ⊢ 𝐽 = (topGen‘ran (,)) |
fouriercnp.cnp | ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP 𝐽)‘𝑋)) |
fouriercnp.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
fouriercnp.b | ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
Ref | Expression |
---|---|
fouriercnp | ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fouriercnp.f | . . 3 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
2 | fouriercnp.t | . . 3 ⊢ 𝑇 = (2 · π) | |
3 | fouriercnp.per | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
4 | fouriercnp.g | . . 3 ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) | |
5 | fouriercnp.dmdv | . . 3 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) | |
6 | fouriercnp.dvcn | . . 3 ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) | |
7 | fouriercnp.rlim | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) | |
8 | fouriercnp.llim | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) | |
9 | fouriercnp.cnp | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP 𝐽)‘𝑋)) | |
10 | uniretop 24799 | . . . . . 6 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
11 | fouriercnp.j | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
12 | 11 | unieqi 4924 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ (topGen‘ran (,)) |
13 | 10, 12 | eqtr4i 2766 | . . . . 5 ⊢ ℝ = ∪ 𝐽 |
14 | 13 | cnprcl 23269 | . . . 4 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐽)‘𝑋) → 𝑋 ∈ ℝ) |
15 | 9, 14 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ) |
16 | limcresi 25935 | . . . 4 ⊢ (𝐹 limℂ 𝑋) ⊆ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) | |
17 | eqid 2735 | . . . . . . . . . . . 12 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
18 | 17 | tgioo2 24839 | . . . . . . . . . . 11 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
19 | 11, 18 | eqtri 2763 | . . . . . . . . . 10 ⊢ 𝐽 = ((TopOpen‘ℂfld) ↾t ℝ) |
20 | 19 | oveq2i 7442 | . . . . . . . . 9 ⊢ (𝐽 CnP 𝐽) = (𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ)) |
21 | 20 | fveq1i 6908 | . . . . . . . 8 ⊢ ((𝐽 CnP 𝐽)‘𝑋) = ((𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑋) |
22 | 9, 21 | eleqtrdi 2849 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑋)) |
23 | 17 | cnfldtop 24820 | . . . . . . . . 9 ⊢ (TopOpen‘ℂfld) ∈ Top |
24 | 23 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ Top) |
25 | ax-resscn 11210 | . . . . . . . . 9 ⊢ ℝ ⊆ ℂ | |
26 | 25 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ ⊆ ℂ) |
27 | unicntop 24822 | . . . . . . . . 9 ⊢ ℂ = ∪ (TopOpen‘ℂfld) | |
28 | 13, 27 | cnprest2 23314 | . . . . . . . 8 ⊢ (((TopOpen‘ℂfld) ∈ Top ∧ 𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋) ↔ 𝐹 ∈ ((𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑋))) |
29 | 24, 1, 26, 28 | syl3anc 1370 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋) ↔ 𝐹 ∈ ((𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑋))) |
30 | 22, 29 | mpbird 257 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋)) |
31 | 17, 19 | cnplimc 25937 | . . . . . . 7 ⊢ ((ℝ ⊆ ℂ ∧ 𝑋 ∈ ℝ) → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝑋) ∈ (𝐹 limℂ 𝑋)))) |
32 | 25, 15, 31 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝑋) ∈ (𝐹 limℂ 𝑋)))) |
33 | 30, 32 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝑋) ∈ (𝐹 limℂ 𝑋))) |
34 | 33 | simprd 495 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝐹 limℂ 𝑋)) |
35 | 16, 34 | sselid 3993 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
36 | limcresi 25935 | . . . 4 ⊢ (𝐹 limℂ 𝑋) ⊆ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) | |
37 | 36, 34 | sselid 3993 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
38 | fouriercnp.a | . . 3 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
39 | fouriercnp.b | . . 3 ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
40 | 1, 2, 3, 4, 5, 6, 7, 8, 15, 35, 37, 38, 39 | fourierd 46178 | . 2 ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐹‘𝑋) + (𝐹‘𝑋)) / 2)) |
41 | 1, 15 | ffvelcdmd 7105 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ℝ) |
42 | 41 | recnd 11287 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ℂ) |
43 | 42 | 2timesd 12507 | . . . 4 ⊢ (𝜑 → (2 · (𝐹‘𝑋)) = ((𝐹‘𝑋) + (𝐹‘𝑋))) |
44 | 43 | eqcomd 2741 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑋) + (𝐹‘𝑋)) = (2 · (𝐹‘𝑋))) |
45 | 44 | oveq1d 7446 | . 2 ⊢ (𝜑 → (((𝐹‘𝑋) + (𝐹‘𝑋)) / 2) = ((2 · (𝐹‘𝑋)) / 2)) |
46 | 2cnd 12342 | . . 3 ⊢ (𝜑 → 2 ∈ ℂ) | |
47 | 2ne0 12368 | . . . 4 ⊢ 2 ≠ 0 | |
48 | 47 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ≠ 0) |
49 | 42, 46, 48 | divcan3d 12046 | . 2 ⊢ (𝜑 → ((2 · (𝐹‘𝑋)) / 2) = (𝐹‘𝑋)) |
50 | 40, 45, 49 | 3eqtrd 2779 | 1 ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∖ cdif 3960 ⊆ wss 3963 ∅c0 4339 ∪ cuni 4912 ↦ cmpt 5231 dom cdm 5689 ran crn 5690 ↾ cres 5691 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 ℂcc 11151 ℝcr 11152 0cc0 11153 + caddc 11156 · cmul 11158 +∞cpnf 11290 -∞cmnf 11291 -cneg 11491 / cdiv 11918 ℕcn 12264 2c2 12319 ℕ0cn0 12524 (,)cioo 13384 (,]cioc 13385 [,)cico 13386 Σcsu 15719 sincsin 16096 cosccos 16097 πcpi 16099 ↾t crest 17467 TopOpenctopn 17468 topGenctg 17484 ℂfldccnfld 21382 Topctop 22915 CnP ccnp 23249 –cn→ccncf 24916 ∫citg 25667 limℂ climc 25912 D cdv 25913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cc 10473 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-symdif 4259 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12598 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-shft 15103 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-ef 16100 df-sin 16102 df-cos 16103 df-pi 16105 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-t1 23338 df-haus 23339 df-cmp 23411 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-ovol 25513 df-vol 25514 df-mbf 25668 df-itg1 25669 df-itg2 25670 df-ibl 25671 df-itg 25672 df-0p 25719 df-ditg 25897 df-limc 25916 df-dv 25917 |
This theorem is referenced by: fouriercn 46188 |
Copyright terms: Public domain | W3C validator |