|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fouriercnp | Structured version Visualization version GIF version | ||
| Description: If 𝐹 is continuous at the point 𝑋, then its Fourier series at 𝑋, converges to (𝐹‘𝑋). (Contributed by Glauco Siliprandi, 11-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| fouriercnp.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | 
| fouriercnp.t | ⊢ 𝑇 = (2 · π) | 
| fouriercnp.per | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | 
| fouriercnp.g | ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) | 
| fouriercnp.dmdv | ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) | 
| fouriercnp.dvcn | ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) | 
| fouriercnp.rlim | ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) | 
| fouriercnp.llim | ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) | 
| fouriercnp.j | ⊢ 𝐽 = (topGen‘ran (,)) | 
| fouriercnp.cnp | ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP 𝐽)‘𝑋)) | 
| fouriercnp.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | 
| fouriercnp.b | ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | 
| Ref | Expression | 
|---|---|
| fouriercnp | ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fouriercnp.f | . . 3 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
| 2 | fouriercnp.t | . . 3 ⊢ 𝑇 = (2 · π) | |
| 3 | fouriercnp.per | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
| 4 | fouriercnp.g | . . 3 ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) | |
| 5 | fouriercnp.dmdv | . . 3 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) | |
| 6 | fouriercnp.dvcn | . . 3 ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) | |
| 7 | fouriercnp.rlim | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) | |
| 8 | fouriercnp.llim | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) | |
| 9 | fouriercnp.cnp | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP 𝐽)‘𝑋)) | |
| 10 | uniretop 24783 | . . . . . 6 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 11 | fouriercnp.j | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 12 | 11 | unieqi 4919 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ (topGen‘ran (,)) | 
| 13 | 10, 12 | eqtr4i 2768 | . . . . 5 ⊢ ℝ = ∪ 𝐽 | 
| 14 | 13 | cnprcl 23253 | . . . 4 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐽)‘𝑋) → 𝑋 ∈ ℝ) | 
| 15 | 9, 14 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ) | 
| 16 | limcresi 25920 | . . . 4 ⊢ (𝐹 limℂ 𝑋) ⊆ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) | |
| 17 | tgioo4 24826 | . . . . . . . . . . 11 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 18 | 11, 17 | eqtri 2765 | . . . . . . . . . 10 ⊢ 𝐽 = ((TopOpen‘ℂfld) ↾t ℝ) | 
| 19 | 18 | oveq2i 7442 | . . . . . . . . 9 ⊢ (𝐽 CnP 𝐽) = (𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ)) | 
| 20 | 19 | fveq1i 6907 | . . . . . . . 8 ⊢ ((𝐽 CnP 𝐽)‘𝑋) = ((𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑋) | 
| 21 | 9, 20 | eleqtrdi 2851 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑋)) | 
| 22 | eqid 2737 | . . . . . . . . . 10 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 23 | 22 | cnfldtop 24804 | . . . . . . . . 9 ⊢ (TopOpen‘ℂfld) ∈ Top | 
| 24 | 23 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ Top) | 
| 25 | ax-resscn 11212 | . . . . . . . . 9 ⊢ ℝ ⊆ ℂ | |
| 26 | 25 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ ⊆ ℂ) | 
| 27 | unicntop 24806 | . . . . . . . . 9 ⊢ ℂ = ∪ (TopOpen‘ℂfld) | |
| 28 | 13, 27 | cnprest2 23298 | . . . . . . . 8 ⊢ (((TopOpen‘ℂfld) ∈ Top ∧ 𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋) ↔ 𝐹 ∈ ((𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑋))) | 
| 29 | 24, 1, 26, 28 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋) ↔ 𝐹 ∈ ((𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑋))) | 
| 30 | 21, 29 | mpbird 257 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋)) | 
| 31 | 22, 18 | cnplimc 25922 | . . . . . . 7 ⊢ ((ℝ ⊆ ℂ ∧ 𝑋 ∈ ℝ) → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝑋) ∈ (𝐹 limℂ 𝑋)))) | 
| 32 | 25, 15, 31 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝑋) ∈ (𝐹 limℂ 𝑋)))) | 
| 33 | 30, 32 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝑋) ∈ (𝐹 limℂ 𝑋))) | 
| 34 | 33 | simprd 495 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝐹 limℂ 𝑋)) | 
| 35 | 16, 34 | sselid 3981 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) | 
| 36 | limcresi 25920 | . . . 4 ⊢ (𝐹 limℂ 𝑋) ⊆ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) | |
| 37 | 36, 34 | sselid 3981 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) | 
| 38 | fouriercnp.a | . . 3 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
| 39 | fouriercnp.b | . . 3 ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
| 40 | 1, 2, 3, 4, 5, 6, 7, 8, 15, 35, 37, 38, 39 | fourierd 46237 | . 2 ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐹‘𝑋) + (𝐹‘𝑋)) / 2)) | 
| 41 | 1, 15 | ffvelcdmd 7105 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ℝ) | 
| 42 | 41 | recnd 11289 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ℂ) | 
| 43 | 42 | 2timesd 12509 | . . . 4 ⊢ (𝜑 → (2 · (𝐹‘𝑋)) = ((𝐹‘𝑋) + (𝐹‘𝑋))) | 
| 44 | 43 | eqcomd 2743 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑋) + (𝐹‘𝑋)) = (2 · (𝐹‘𝑋))) | 
| 45 | 44 | oveq1d 7446 | . 2 ⊢ (𝜑 → (((𝐹‘𝑋) + (𝐹‘𝑋)) / 2) = ((2 · (𝐹‘𝑋)) / 2)) | 
| 46 | 2cnd 12344 | . . 3 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 47 | 2ne0 12370 | . . . 4 ⊢ 2 ≠ 0 | |
| 48 | 47 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ≠ 0) | 
| 49 | 42, 46, 48 | divcan3d 12048 | . 2 ⊢ (𝜑 → ((2 · (𝐹‘𝑋)) / 2) = (𝐹‘𝑋)) | 
| 50 | 40, 45, 49 | 3eqtrd 2781 | 1 ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∖ cdif 3948 ⊆ wss 3951 ∅c0 4333 ∪ cuni 4907 ↦ cmpt 5225 dom cdm 5685 ran crn 5686 ↾ cres 5687 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 Fincfn 8985 ℂcc 11153 ℝcr 11154 0cc0 11155 + caddc 11158 · cmul 11160 +∞cpnf 11292 -∞cmnf 11293 -cneg 11493 / cdiv 11920 ℕcn 12266 2c2 12321 ℕ0cn0 12526 (,)cioo 13387 (,]cioc 13388 [,)cico 13389 Σcsu 15722 sincsin 16099 cosccos 16100 πcpi 16102 ↾t crest 17465 TopOpenctopn 17466 topGenctg 17482 ℂfldccnfld 21364 Topctop 22899 CnP ccnp 23233 –cn→ccncf 24902 ∫citg 25653 limℂ climc 25897 D cdv 25898 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cc 10475 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-symdif 4253 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-disj 5111 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-omul 8511 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-dju 9941 df-card 9979 df-acn 9982 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-xnn0 12600 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-ioc 13392 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-fac 14313 df-bc 14342 df-hash 14370 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-sum 15723 df-ef 16103 df-sin 16105 df-cos 16106 df-pi 16108 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-lp 23144 df-perf 23145 df-cn 23235 df-cnp 23236 df-t1 23322 df-haus 23323 df-cmp 23395 df-tx 23570 df-hmeo 23763 df-fil 23854 df-fm 23946 df-flim 23947 df-flf 23948 df-xms 24330 df-ms 24331 df-tms 24332 df-cncf 24904 df-ovol 25499 df-vol 25500 df-mbf 25654 df-itg1 25655 df-itg2 25656 df-ibl 25657 df-itg 25658 df-0p 25705 df-ditg 25882 df-limc 25901 df-dv 25902 | 
| This theorem is referenced by: fouriercn 46247 | 
| Copyright terms: Public domain | W3C validator |