MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnpi2 Structured version   Visualization version   GIF version

Theorem metcnpi2 24398
Description: Epsilon-delta property of a continuous metric space function, with swapped distance function arguments as in metcnp2 24395. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpenβ€˜πΆ)
metcn.4 𝐾 = (MetOpenβ€˜π·)
Assertion
Ref Expression
metcnpi2 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ∧ 𝐴 ∈ ℝ+)) β†’ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑦𝐢𝑃) < π‘₯ β†’ ((πΉβ€˜π‘¦)𝐷(πΉβ€˜π‘ƒ)) < 𝐴))
Distinct variable groups:   π‘₯,𝑦,𝐹   π‘₯,𝐽,𝑦   π‘₯,𝐾,𝑦   π‘₯,𝑋,𝑦   π‘₯,π‘Œ,𝑦   π‘₯,𝐴,𝑦   π‘₯,𝐢,𝑦   π‘₯,𝐷,𝑦   π‘₯,𝑃,𝑦

Proof of Theorem metcnpi2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ))
2 simpll 764 . . . . 5 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝐢 ∈ (∞Metβ€˜π‘‹))
3 simplr 766 . . . . 5 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝐷 ∈ (∞Metβ€˜π‘Œ))
4 eqid 2724 . . . . . . . 8 βˆͺ 𝐽 = βˆͺ 𝐽
54cnprcl 23093 . . . . . . 7 (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) β†’ 𝑃 ∈ βˆͺ 𝐽)
65adantl 481 . . . . . 6 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝑃 ∈ βˆͺ 𝐽)
7 metcn.2 . . . . . . . 8 𝐽 = (MetOpenβ€˜πΆ)
87mopnuni 24291 . . . . . . 7 (𝐢 ∈ (∞Metβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
98ad2antrr 723 . . . . . 6 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝑋 = βˆͺ 𝐽)
106, 9eleqtrrd 2828 . . . . 5 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝑃 ∈ 𝑋)
11 metcn.4 . . . . . 6 𝐾 = (MetOpenβ€˜π·)
127, 11metcnp2 24395 . . . . 5 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘§ ∈ ℝ+ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑦𝐢𝑃) < π‘₯ β†’ ((πΉβ€˜π‘¦)𝐷(πΉβ€˜π‘ƒ)) < 𝑧))))
132, 3, 10, 12syl3anc 1368 . . . 4 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘§ ∈ ℝ+ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑦𝐢𝑃) < π‘₯ β†’ ((πΉβ€˜π‘¦)𝐷(πΉβ€˜π‘ƒ)) < 𝑧))))
141, 13mpbid 231 . . 3 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘§ ∈ ℝ+ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑦𝐢𝑃) < π‘₯ β†’ ((πΉβ€˜π‘¦)𝐷(πΉβ€˜π‘ƒ)) < 𝑧)))
15 breq2 5143 . . . . . 6 (𝑧 = 𝐴 β†’ (((πΉβ€˜π‘¦)𝐷(πΉβ€˜π‘ƒ)) < 𝑧 ↔ ((πΉβ€˜π‘¦)𝐷(πΉβ€˜π‘ƒ)) < 𝐴))
1615imbi2d 340 . . . . 5 (𝑧 = 𝐴 β†’ (((𝑦𝐢𝑃) < π‘₯ β†’ ((πΉβ€˜π‘¦)𝐷(πΉβ€˜π‘ƒ)) < 𝑧) ↔ ((𝑦𝐢𝑃) < π‘₯ β†’ ((πΉβ€˜π‘¦)𝐷(πΉβ€˜π‘ƒ)) < 𝐴)))
1716rexralbidv 3212 . . . 4 (𝑧 = 𝐴 β†’ (βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑦𝐢𝑃) < π‘₯ β†’ ((πΉβ€˜π‘¦)𝐷(πΉβ€˜π‘ƒ)) < 𝑧) ↔ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑦𝐢𝑃) < π‘₯ β†’ ((πΉβ€˜π‘¦)𝐷(πΉβ€˜π‘ƒ)) < 𝐴)))
1817rspccv 3601 . . 3 (βˆ€π‘§ ∈ ℝ+ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑦𝐢𝑃) < π‘₯ β†’ ((πΉβ€˜π‘¦)𝐷(πΉβ€˜π‘ƒ)) < 𝑧) β†’ (𝐴 ∈ ℝ+ β†’ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑦𝐢𝑃) < π‘₯ β†’ ((πΉβ€˜π‘¦)𝐷(πΉβ€˜π‘ƒ)) < 𝐴)))
1914, 18simpl2im 503 . 2 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ (𝐴 ∈ ℝ+ β†’ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑦𝐢𝑃) < π‘₯ β†’ ((πΉβ€˜π‘¦)𝐷(πΉβ€˜π‘ƒ)) < 𝐴)))
2019impr 454 1 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ∧ 𝐴 ∈ ℝ+)) β†’ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑦𝐢𝑃) < π‘₯ β†’ ((πΉβ€˜π‘¦)𝐷(πΉβ€˜π‘ƒ)) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  βˆƒwrex 3062  βˆͺ cuni 4900   class class class wbr 5139  βŸΆwf 6530  β€˜cfv 6534  (class class class)co 7402   < clt 11247  β„+crp 12975  βˆžMetcxmet 21219  MetOpencmopn 21224   CnP ccnp 23073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-sup 9434  df-inf 9435  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12976  df-xneg 13093  df-xadd 13094  df-xmul 13095  df-topgen 17394  df-psmet 21226  df-xmet 21227  df-bl 21229  df-mopn 21230  df-top 22740  df-topon 22757  df-bases 22793  df-cnp 23076
This theorem is referenced by:  metcnpi3  24399  ftc1lem6  25920  ftc1cnnc  37063
  Copyright terms: Public domain W3C validator