MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnpi Structured version   Visualization version   GIF version

Theorem metcnpi 23297
Description: Epsilon-delta property of a continuous metric space function, with function arguments as in metcnp 23294. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcnpi (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐴,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑃,𝑦

Proof of Theorem metcnpi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
2 simpll 767 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐶 ∈ (∞Met‘𝑋))
3 simplr 769 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐷 ∈ (∞Met‘𝑌))
4 eqid 2738 . . . . . . . 8 𝐽 = 𝐽
54cnprcl 21996 . . . . . . 7 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 𝐽)
65adantl 485 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 𝐽)
7 metcn.2 . . . . . . . 8 𝐽 = (MetOpen‘𝐶)
87mopnuni 23194 . . . . . . 7 (𝐶 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
98ad2antrr 726 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑋 = 𝐽)
106, 9eleqtrrd 2836 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)
11 metcn.4 . . . . . 6 𝐾 = (MetOpen‘𝐷)
127, 11metcnp 23294 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ ℝ+𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧))))
132, 3, 10, 12syl3anc 1372 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ ℝ+𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧))))
141, 13mpbid 235 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ ℝ+𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧)))
15 breq2 5034 . . . . . 6 (𝑧 = 𝐴 → (((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧 ↔ ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴))
1615imbi2d 344 . . . . 5 (𝑧 = 𝐴 → (((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧) ↔ ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴)))
1716rexralbidv 3211 . . . 4 (𝑧 = 𝐴 → (∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧) ↔ ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴)))
1817rspccv 3523 . . 3 (∀𝑧 ∈ ℝ+𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧) → (𝐴 ∈ ℝ+ → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴)))
1914, 18simpl2im 507 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐴 ∈ ℝ+ → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴)))
2019impr 458 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3053  wrex 3054   cuni 4796   class class class wbr 5030  wf 6335  cfv 6339  (class class class)co 7170   < clt 10753  +crp 12472  ∞Metcxmet 20202  MetOpencmopn 20207   CnP ccnp 21976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-inf 8980  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-n0 11977  df-z 12063  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-topgen 16820  df-psmet 20209  df-xmet 20210  df-bl 20212  df-mopn 20213  df-top 21645  df-topon 21662  df-bases 21697  df-cnp 21979
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator