MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnpi Structured version   Visualization version   GIF version

Theorem metcnpi 24053
Description: Epsilon-delta property of a continuous metric space function, with function arguments as in metcnp 24050. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpenβ€˜πΆ)
metcn.4 𝐾 = (MetOpenβ€˜π·)
Assertion
Ref Expression
metcnpi (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ∧ 𝐴 ∈ ℝ+)) β†’ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑃𝐢𝑦) < π‘₯ β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘¦)) < 𝐴))
Distinct variable groups:   π‘₯,𝑦,𝐹   π‘₯,𝐽,𝑦   π‘₯,𝐾,𝑦   π‘₯,𝑋,𝑦   π‘₯,π‘Œ,𝑦   π‘₯,𝐴,𝑦   π‘₯,𝐢,𝑦   π‘₯,𝐷,𝑦   π‘₯,𝑃,𝑦

Proof of Theorem metcnpi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr 486 . . . 4 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ))
2 simpll 766 . . . . 5 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝐢 ∈ (∞Metβ€˜π‘‹))
3 simplr 768 . . . . 5 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝐷 ∈ (∞Metβ€˜π‘Œ))
4 eqid 2733 . . . . . . . 8 βˆͺ 𝐽 = βˆͺ 𝐽
54cnprcl 22749 . . . . . . 7 (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) β†’ 𝑃 ∈ βˆͺ 𝐽)
65adantl 483 . . . . . 6 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝑃 ∈ βˆͺ 𝐽)
7 metcn.2 . . . . . . . 8 𝐽 = (MetOpenβ€˜πΆ)
87mopnuni 23947 . . . . . . 7 (𝐢 ∈ (∞Metβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
98ad2antrr 725 . . . . . 6 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝑋 = βˆͺ 𝐽)
106, 9eleqtrrd 2837 . . . . 5 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝑃 ∈ 𝑋)
11 metcn.4 . . . . . 6 𝐾 = (MetOpenβ€˜π·)
127, 11metcnp 24050 . . . . 5 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘§ ∈ ℝ+ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑃𝐢𝑦) < π‘₯ β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘¦)) < 𝑧))))
132, 3, 10, 12syl3anc 1372 . . . 4 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘§ ∈ ℝ+ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑃𝐢𝑦) < π‘₯ β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘¦)) < 𝑧))))
141, 13mpbid 231 . . 3 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘§ ∈ ℝ+ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑃𝐢𝑦) < π‘₯ β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘¦)) < 𝑧)))
15 breq2 5153 . . . . . 6 (𝑧 = 𝐴 β†’ (((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘¦)) < 𝑧 ↔ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘¦)) < 𝐴))
1615imbi2d 341 . . . . 5 (𝑧 = 𝐴 β†’ (((𝑃𝐢𝑦) < π‘₯ β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘¦)) < 𝑧) ↔ ((𝑃𝐢𝑦) < π‘₯ β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘¦)) < 𝐴)))
1716rexralbidv 3221 . . . 4 (𝑧 = 𝐴 β†’ (βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑃𝐢𝑦) < π‘₯ β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘¦)) < 𝑧) ↔ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑃𝐢𝑦) < π‘₯ β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘¦)) < 𝐴)))
1817rspccv 3610 . . 3 (βˆ€π‘§ ∈ ℝ+ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑃𝐢𝑦) < π‘₯ β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘¦)) < 𝑧) β†’ (𝐴 ∈ ℝ+ β†’ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑃𝐢𝑦) < π‘₯ β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘¦)) < 𝐴)))
1914, 18simpl2im 505 . 2 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ (𝐴 ∈ ℝ+ β†’ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑃𝐢𝑦) < π‘₯ β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘¦)) < 𝐴)))
2019impr 456 1 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ∧ 𝐴 ∈ ℝ+)) β†’ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑋 ((𝑃𝐢𝑦) < π‘₯ β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘¦)) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βˆƒwrex 3071  βˆͺ cuni 4909   class class class wbr 5149  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   < clt 11248  β„+crp 12974  βˆžMetcxmet 20929  MetOpencmopn 20934   CnP ccnp 22729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-topgen 17389  df-psmet 20936  df-xmet 20937  df-bl 20939  df-mopn 20940  df-top 22396  df-topon 22413  df-bases 22449  df-cnp 22732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator