| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metcnpi | Structured version Visualization version GIF version | ||
| Description: Epsilon-delta property of a continuous metric space function, with function arguments as in metcnp 24454. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
| Ref | Expression |
|---|---|
| metcn.2 | ⊢ 𝐽 = (MetOpen‘𝐶) |
| metcn.4 | ⊢ 𝐾 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| metcnpi | ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) | |
| 2 | simpll 766 | . . . . 5 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐶 ∈ (∞Met‘𝑋)) | |
| 3 | simplr 768 | . . . . 5 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐷 ∈ (∞Met‘𝑌)) | |
| 4 | eqid 2731 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 5 | 4 | cnprcl 23158 | . . . . . . 7 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 ∈ ∪ 𝐽) |
| 6 | 5 | adantl 481 | . . . . . 6 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ ∪ 𝐽) |
| 7 | metcn.2 | . . . . . . . 8 ⊢ 𝐽 = (MetOpen‘𝐶) | |
| 8 | 7 | mopnuni 24354 | . . . . . . 7 ⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
| 9 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑋 = ∪ 𝐽) |
| 10 | 6, 9 | eleqtrrd 2834 | . . . . 5 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ 𝑋) |
| 11 | metcn.4 | . . . . . 6 ⊢ 𝐾 = (MetOpen‘𝐷) | |
| 12 | 7, 11 | metcnp 24454 | . . . . 5 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ ℝ+ ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝑧)))) |
| 13 | 2, 3, 10, 12 | syl3anc 1373 | . . . 4 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ ℝ+ ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝑧)))) |
| 14 | 1, 13 | mpbid 232 | . . 3 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ ℝ+ ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝑧))) |
| 15 | breq2 5095 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝑧 ↔ ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝐴)) | |
| 16 | 15 | imbi2d 340 | . . . . 5 ⊢ (𝑧 = 𝐴 → (((𝑃𝐶𝑦) < 𝑥 → ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝑧) ↔ ((𝑃𝐶𝑦) < 𝑥 → ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝐴))) |
| 17 | 16 | rexralbidv 3198 | . . . 4 ⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝑧) ↔ ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝐴))) |
| 18 | 17 | rspccv 3574 | . . 3 ⊢ (∀𝑧 ∈ ℝ+ ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝑧) → (𝐴 ∈ ℝ+ → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝐴))) |
| 19 | 14, 18 | simpl2im 503 | . 2 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐴 ∈ ℝ+ → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝐴))) |
| 20 | 19 | impr 454 | 1 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∪ cuni 4859 class class class wbr 5091 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 < clt 11143 ℝ+crp 12887 ∞Metcxmet 21274 MetOpencmopn 21279 CnP ccnp 23138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-topgen 17344 df-psmet 21281 df-xmet 21282 df-bl 21284 df-mopn 21285 df-top 22807 df-topon 22824 df-bases 22859 df-cnp 23141 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |