MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coffth Structured version   Visualization version   GIF version

Theorem coffth 17568
Description: The composition of two fully faithful functors is fully faithful. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
coffth.f (𝜑𝐹 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)))
coffth.g (𝜑𝐺 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
Assertion
Ref Expression
coffth (𝜑 → (𝐺func 𝐹) ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)))

Proof of Theorem coffth
StepHypRef Expression
1 coffth.f . . . 4 (𝜑𝐹 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)))
21elin1d 4128 . . 3 (𝜑𝐹 ∈ (𝐶 Full 𝐷))
3 coffth.g . . . 4 (𝜑𝐺 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
43elin1d 4128 . . 3 (𝜑𝐺 ∈ (𝐷 Full 𝐸))
52, 4cofull 17566 . 2 (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Full 𝐸))
61elin2d 4129 . . 3 (𝜑𝐹 ∈ (𝐶 Faith 𝐷))
73elin2d 4129 . . 3 (𝜑𝐺 ∈ (𝐷 Faith 𝐸))
86, 7cofth 17567 . 2 (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Faith 𝐸))
95, 8elind 4124 1 (𝜑 → (𝐺func 𝐹) ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cin 3882  (class class class)co 7255  func ccofu 17487   Full cful 17534   Faith cfth 17535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-ixp 8644  df-cat 17294  df-cid 17295  df-func 17489  df-cofu 17491  df-full 17536  df-fth 17537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator