![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coffth | Structured version Visualization version GIF version |
Description: The composition of two fully faithful functors is fully faithful. (Contributed by Mario Carneiro, 28-Jan-2017.) |
Ref | Expression |
---|---|
coffth.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))) |
coffth.g | ⊢ (𝜑 → 𝐺 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
Ref | Expression |
---|---|
coffth | ⊢ (𝜑 → (𝐺 ∘func 𝐹) ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coffth.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))) | |
2 | 1 | elin1d 4214 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Full 𝐷)) |
3 | coffth.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) | |
4 | 3 | elin1d 4214 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Full 𝐸)) |
5 | 2, 4 | cofull 17988 | . 2 ⊢ (𝜑 → (𝐺 ∘func 𝐹) ∈ (𝐶 Full 𝐸)) |
6 | 1 | elin2d 4215 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Faith 𝐷)) |
7 | 3 | elin2d 4215 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Faith 𝐸)) |
8 | 6, 7 | cofth 17989 | . 2 ⊢ (𝜑 → (𝐺 ∘func 𝐹) ∈ (𝐶 Faith 𝐸)) |
9 | 5, 8 | elind 4210 | 1 ⊢ (𝜑 → (𝐺 ∘func 𝐹) ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∩ cin 3962 (class class class)co 7431 ∘func ccofu 17907 Full cful 17956 Faith cfth 17957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-map 8867 df-ixp 8937 df-cat 17713 df-cid 17714 df-func 17909 df-cofu 17911 df-full 17958 df-fth 17959 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |