![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coffth | Structured version Visualization version GIF version |
Description: The composition of two fully faithful functors is fully faithful. (Contributed by Mario Carneiro, 28-Jan-2017.) |
Ref | Expression |
---|---|
coffth.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))) |
coffth.g | ⊢ (𝜑 → 𝐺 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
Ref | Expression |
---|---|
coffth | ⊢ (𝜑 → (𝐺 ∘func 𝐹) ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coffth.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))) | |
2 | 1 | elin1d 4199 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Full 𝐷)) |
3 | coffth.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) | |
4 | 3 | elin1d 4199 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Full 𝐸)) |
5 | 2, 4 | cofull 17885 | . 2 ⊢ (𝜑 → (𝐺 ∘func 𝐹) ∈ (𝐶 Full 𝐸)) |
6 | 1 | elin2d 4200 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Faith 𝐷)) |
7 | 3 | elin2d 4200 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Faith 𝐸)) |
8 | 6, 7 | cofth 17886 | . 2 ⊢ (𝜑 → (𝐺 ∘func 𝐹) ∈ (𝐶 Faith 𝐸)) |
9 | 5, 8 | elind 4195 | 1 ⊢ (𝜑 → (𝐺 ∘func 𝐹) ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∩ cin 3948 (class class class)co 7409 ∘func ccofu 17806 Full cful 17853 Faith cfth 17854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-map 8822 df-ixp 8892 df-cat 17612 df-cid 17613 df-func 17808 df-cofu 17810 df-full 17855 df-fth 17856 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |