MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coffth Structured version   Visualization version   GIF version

Theorem coffth 17652
Description: The composition of two fully faithful functors is fully faithful. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
coffth.f (𝜑𝐹 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)))
coffth.g (𝜑𝐺 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
Assertion
Ref Expression
coffth (𝜑 → (𝐺func 𝐹) ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)))

Proof of Theorem coffth
StepHypRef Expression
1 coffth.f . . . 4 (𝜑𝐹 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)))
21elin1d 4132 . . 3 (𝜑𝐹 ∈ (𝐶 Full 𝐷))
3 coffth.g . . . 4 (𝜑𝐺 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
43elin1d 4132 . . 3 (𝜑𝐺 ∈ (𝐷 Full 𝐸))
52, 4cofull 17650 . 2 (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Full 𝐸))
61elin2d 4133 . . 3 (𝜑𝐹 ∈ (𝐶 Faith 𝐷))
73elin2d 4133 . . 3 (𝜑𝐺 ∈ (𝐷 Faith 𝐸))
86, 7cofth 17651 . 2 (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Faith 𝐸))
95, 8elind 4128 1 (𝜑 → (𝐺func 𝐹) ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cin 3886  (class class class)co 7275  func ccofu 17571   Full cful 17618   Faith cfth 17619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-ixp 8686  df-cat 17377  df-cid 17378  df-func 17573  df-cofu 17575  df-full 17620  df-fth 17621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator