MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coffth Structured version   Visualization version   GIF version

Theorem coffth 17900
Description: The composition of two fully faithful functors is fully faithful. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
coffth.f (𝜑𝐹 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)))
coffth.g (𝜑𝐺 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
Assertion
Ref Expression
coffth (𝜑 → (𝐺func 𝐹) ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)))

Proof of Theorem coffth
StepHypRef Expression
1 coffth.f . . . 4 (𝜑𝐹 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)))
21elin1d 4167 . . 3 (𝜑𝐹 ∈ (𝐶 Full 𝐷))
3 coffth.g . . . 4 (𝜑𝐺 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
43elin1d 4167 . . 3 (𝜑𝐺 ∈ (𝐷 Full 𝐸))
52, 4cofull 17898 . 2 (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Full 𝐸))
61elin2d 4168 . . 3 (𝜑𝐹 ∈ (𝐶 Faith 𝐷))
73elin2d 4168 . . 3 (𝜑𝐺 ∈ (𝐷 Faith 𝐸))
86, 7cofth 17899 . 2 (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Faith 𝐸))
95, 8elind 4163 1 (𝜑 → (𝐺func 𝐹) ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cin 3913  (class class class)co 7387  func ccofu 17818   Full cful 17866   Faith cfth 17867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-cat 17629  df-cid 17630  df-func 17820  df-cofu 17822  df-full 17868  df-fth 17869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator