Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rescfth | Structured version Visualization version GIF version |
Description: The inclusion functor from a subcategory is a faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
rescfth.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐽) |
rescfth.i | ⊢ 𝐼 = (idfunc‘𝐷) |
Ref | Expression |
---|---|
rescfth | ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 ∈ (𝐷 Faith 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescfth.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐽) | |
2 | 1 | oveq2i 7286 | . . 3 ⊢ (𝐷 Faith 𝐷) = (𝐷 Faith (𝐶 ↾cat 𝐽)) |
3 | fthres2 17648 | . . 3 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (𝐷 Faith (𝐶 ↾cat 𝐽)) ⊆ (𝐷 Faith 𝐶)) | |
4 | 2, 3 | eqsstrid 3969 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (𝐷 Faith 𝐷) ⊆ (𝐷 Faith 𝐶)) |
5 | id 22 | . . . . 5 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐽 ∈ (Subcat‘𝐶)) | |
6 | 1, 5 | subccat 17563 | . . . 4 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐷 ∈ Cat) |
7 | rescfth.i | . . . . 5 ⊢ 𝐼 = (idfunc‘𝐷) | |
8 | 7 | idffth 17649 | . . . 4 ⊢ (𝐷 ∈ Cat → 𝐼 ∈ ((𝐷 Full 𝐷) ∩ (𝐷 Faith 𝐷))) |
9 | 6, 8 | syl 17 | . . 3 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 ∈ ((𝐷 Full 𝐷) ∩ (𝐷 Faith 𝐷))) |
10 | 9 | elin2d 4133 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 ∈ (𝐷 Faith 𝐷)) |
11 | 4, 10 | sseldd 3922 | 1 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 ∈ (𝐷 Faith 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ‘cfv 6433 (class class class)co 7275 Catccat 17373 ↾cat cresc 17520 Subcatcsubc 17521 idfunccidfu 17570 Full cful 17618 Faith cfth 17619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-hom 16986 df-cco 16987 df-cat 17377 df-cid 17378 df-homf 17379 df-ssc 17522 df-resc 17523 df-subc 17524 df-func 17573 df-idfu 17574 df-full 17620 df-fth 17621 |
This theorem is referenced by: inclfusubc 45425 |
Copyright terms: Public domain | W3C validator |