MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofu2nd Structured version   Visualization version   GIF version

Theorem cofu2nd 17789
Description: Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b 𝐵 = (Base‘𝐶)
cofuval.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofuval.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
cofu2nd.x (𝜑𝑋𝐵)
cofu2nd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
cofu2nd (𝜑 → (𝑋(2nd ‘(𝐺func 𝐹))𝑌) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)))

Proof of Theorem cofu2nd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofuval.b . . . . 5 𝐵 = (Base‘𝐶)
2 cofuval.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 cofuval.g . . . . 5 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
41, 2, 3cofuval 17786 . . . 4 (𝜑 → (𝐺func 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
54fveq2d 6826 . . 3 (𝜑 → (2nd ‘(𝐺func 𝐹)) = (2nd ‘⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩))
6 fvex 6835 . . . . 5 (1st𝐺) ∈ V
7 fvex 6835 . . . . 5 (1st𝐹) ∈ V
86, 7coex 7860 . . . 4 ((1st𝐺) ∘ (1st𝐹)) ∈ V
91fvexi 6836 . . . . 5 𝐵 ∈ V
109, 9mpoex 8011 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) ∈ V
118, 10op2nd 7930 . . 3 (2nd ‘⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩) = (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
125, 11eqtrdi 2782 . 2 (𝜑 → (2nd ‘(𝐺func 𝐹)) = (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))))
13 simprl 770 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
1413fveq2d 6826 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((1st𝐹)‘𝑥) = ((1st𝐹)‘𝑋))
15 simprr 772 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
1615fveq2d 6826 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((1st𝐹)‘𝑦) = ((1st𝐹)‘𝑌))
1714, 16oveq12d 7364 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) = (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)))
1813, 15oveq12d 7364 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥(2nd𝐹)𝑦) = (𝑋(2nd𝐹)𝑌))
1917, 18coeq12d 5804 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)))
20 cofu2nd.x . 2 (𝜑𝑋𝐵)
21 cofu2nd.y . 2 (𝜑𝑌𝐵)
22 ovex 7379 . . . 4 (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∈ V
23 ovex 7379 . . . 4 (𝑋(2nd𝐹)𝑌) ∈ V
2422, 23coex 7860 . . 3 ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)) ∈ V
2524a1i 11 . 2 (𝜑 → ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)) ∈ V)
2612, 19, 20, 21, 25ovmpod 7498 1 (𝜑 → (𝑋(2nd ‘(𝐺func 𝐹))𝑌) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4582  ccom 5620  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  Basecbs 17117   Func cfunc 17758  func ccofu 17760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-func 17762  df-cofu 17764
This theorem is referenced by:  cofu2  17790  cofucl  17792  cofuass  17793  cofull  17840  cofth  17841  catciso  18015  cofidf2a  49148
  Copyright terms: Public domain W3C validator