MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofu2nd Structured version   Visualization version   GIF version

Theorem cofu2nd 17345
Description: Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b 𝐵 = (Base‘𝐶)
cofuval.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofuval.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
cofu2nd.x (𝜑𝑋𝐵)
cofu2nd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
cofu2nd (𝜑 → (𝑋(2nd ‘(𝐺func 𝐹))𝑌) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)))

Proof of Theorem cofu2nd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofuval.b . . . . 5 𝐵 = (Base‘𝐶)
2 cofuval.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 cofuval.g . . . . 5 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
41, 2, 3cofuval 17342 . . . 4 (𝜑 → (𝐺func 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
54fveq2d 6699 . . 3 (𝜑 → (2nd ‘(𝐺func 𝐹)) = (2nd ‘⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩))
6 fvex 6708 . . . . 5 (1st𝐺) ∈ V
7 fvex 6708 . . . . 5 (1st𝐹) ∈ V
86, 7coex 7686 . . . 4 ((1st𝐺) ∘ (1st𝐹)) ∈ V
91fvexi 6709 . . . . 5 𝐵 ∈ V
109, 9mpoex 7828 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) ∈ V
118, 10op2nd 7748 . . 3 (2nd ‘⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩) = (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
125, 11eqtrdi 2787 . 2 (𝜑 → (2nd ‘(𝐺func 𝐹)) = (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))))
13 simprl 771 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
1413fveq2d 6699 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((1st𝐹)‘𝑥) = ((1st𝐹)‘𝑋))
15 simprr 773 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
1615fveq2d 6699 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((1st𝐹)‘𝑦) = ((1st𝐹)‘𝑌))
1714, 16oveq12d 7209 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) = (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)))
1813, 15oveq12d 7209 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥(2nd𝐹)𝑦) = (𝑋(2nd𝐹)𝑌))
1917, 18coeq12d 5718 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)))
20 cofu2nd.x . 2 (𝜑𝑋𝐵)
21 cofu2nd.y . 2 (𝜑𝑌𝐵)
22 ovex 7224 . . . 4 (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∈ V
23 ovex 7224 . . . 4 (𝑋(2nd𝐹)𝑌) ∈ V
2422, 23coex 7686 . . 3 ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)) ∈ V
2524a1i 11 . 2 (𝜑 → ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)) ∈ V)
2612, 19, 20, 21, 25ovmpod 7339 1 (𝜑 → (𝑋(2nd ‘(𝐺func 𝐹))𝑌) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  Vcvv 3398  cop 4533  ccom 5540  cfv 6358  (class class class)co 7191  cmpo 7193  1st c1st 7737  2nd c2nd 7738  Basecbs 16666   Func cfunc 17314  func ccofu 17316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-map 8488  df-ixp 8557  df-func 17318  df-cofu 17320
This theorem is referenced by:  cofu2  17346  cofucl  17348  cofuass  17349  cofull  17395  cofth  17396  catciso  17571
  Copyright terms: Public domain W3C validator