MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofu2nd Structured version   Visualization version   GIF version

Theorem cofu2nd 17842
Description: Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b 𝐵 = (Base‘𝐶)
cofuval.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofuval.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
cofu2nd.x (𝜑𝑋𝐵)
cofu2nd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
cofu2nd (𝜑 → (𝑋(2nd ‘(𝐺func 𝐹))𝑌) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)))

Proof of Theorem cofu2nd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofuval.b . . . . 5 𝐵 = (Base‘𝐶)
2 cofuval.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 cofuval.g . . . . 5 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
41, 2, 3cofuval 17839 . . . 4 (𝜑 → (𝐺func 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
54fveq2d 6895 . . 3 (𝜑 → (2nd ‘(𝐺func 𝐹)) = (2nd ‘⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩))
6 fvex 6904 . . . . 5 (1st𝐺) ∈ V
7 fvex 6904 . . . . 5 (1st𝐹) ∈ V
86, 7coex 7925 . . . 4 ((1st𝐺) ∘ (1st𝐹)) ∈ V
91fvexi 6905 . . . . 5 𝐵 ∈ V
109, 9mpoex 8070 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) ∈ V
118, 10op2nd 7988 . . 3 (2nd ‘⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩) = (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
125, 11eqtrdi 2787 . 2 (𝜑 → (2nd ‘(𝐺func 𝐹)) = (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))))
13 simprl 768 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
1413fveq2d 6895 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((1st𝐹)‘𝑥) = ((1st𝐹)‘𝑋))
15 simprr 770 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
1615fveq2d 6895 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((1st𝐹)‘𝑦) = ((1st𝐹)‘𝑌))
1714, 16oveq12d 7430 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) = (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)))
1813, 15oveq12d 7430 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥(2nd𝐹)𝑦) = (𝑋(2nd𝐹)𝑌))
1917, 18coeq12d 5864 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)))
20 cofu2nd.x . 2 (𝜑𝑋𝐵)
21 cofu2nd.y . 2 (𝜑𝑌𝐵)
22 ovex 7445 . . . 4 (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∈ V
23 ovex 7445 . . . 4 (𝑋(2nd𝐹)𝑌) ∈ V
2422, 23coex 7925 . . 3 ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)) ∈ V
2524a1i 11 . 2 (𝜑 → ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)) ∈ V)
2612, 19, 20, 21, 25ovmpod 7563 1 (𝜑 → (𝑋(2nd ‘(𝐺func 𝐹))𝑌) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  cop 4634  ccom 5680  cfv 6543  (class class class)co 7412  cmpo 7414  1st c1st 7977  2nd c2nd 7978  Basecbs 17151   Func cfunc 17811  func ccofu 17813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-map 8828  df-ixp 8898  df-func 17815  df-cofu 17817
This theorem is referenced by:  cofu2  17843  cofucl  17845  cofuass  17846  cofull  17894  cofth  17895  catciso  18071
  Copyright terms: Public domain W3C validator