Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmfolem Structured version   Visualization version   GIF version

Theorem cvmfolem 32769
Description: Lemma for cvmfo 32790. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmseu.1 𝐵 = 𝐶
cvmfolem.2 𝑋 = 𝐽
Assertion
Ref Expression
cvmfolem (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵onto𝑋)
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣   𝑘,𝐽,𝑠,𝑢,𝑣   𝑣,𝐵
Allowed substitution hints:   𝐵(𝑢,𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmfolem
Dummy variables 𝑡 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmcn 32752 . . 3 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
2 cvmseu.1 . . . 4 𝐵 = 𝐶
3 cvmfolem.2 . . . 4 𝑋 = 𝐽
42, 3cnf 21959 . . 3 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵𝑋)
51, 4syl 17 . 2 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵𝑋)
6 cvmcov.1 . . . . . 6 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
76, 3cvmcov 32753 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑥𝑋) → ∃𝑧𝐽 (𝑥𝑧 ∧ (𝑆𝑧) ≠ ∅))
87ex 416 . . . 4 (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝑥𝑋 → ∃𝑧𝐽 (𝑥𝑧 ∧ (𝑆𝑧) ≠ ∅)))
9 n0 4247 . . . . . . 7 ((𝑆𝑧) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑆𝑧))
106cvmsn0 32758 . . . . . . . . . . . 12 (𝑤 ∈ (𝑆𝑧) → 𝑤 ≠ ∅)
1110ad2antll 728 . . . . . . . . . . 11 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → 𝑤 ≠ ∅)
12 n0 4247 . . . . . . . . . . 11 (𝑤 ≠ ∅ ↔ ∃𝑡 𝑡𝑤)
1311, 12sylib 221 . . . . . . . . . 10 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → ∃𝑡 𝑡𝑤)
14 simprlr 779 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑤 ∈ (𝑆𝑧))
156cvmsss 32757 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝑆𝑧) → 𝑤𝐶)
1614, 15syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑤𝐶)
17 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑡𝑤)
1816, 17sseldd 3895 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑡𝐶)
19 elssuni 4833 . . . . . . . . . . . . . . . 16 (𝑡𝐶𝑡 𝐶)
2018, 19syl 17 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑡 𝐶)
2120, 2sseqtrrdi 3945 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑡𝐵)
22 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
236cvmsf1o 32762 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑤 ∈ (𝑆𝑧) ∧ 𝑡𝑤) → (𝐹𝑡):𝑡1-1-onto𝑧)
2422, 14, 17, 23syl3anc 1368 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → (𝐹𝑡):𝑡1-1-onto𝑧)
25 f1ocnv 6619 . . . . . . . . . . . . . . . 16 ((𝐹𝑡):𝑡1-1-onto𝑧(𝐹𝑡):𝑧1-1-onto𝑡)
26 f1of 6607 . . . . . . . . . . . . . . . 16 ((𝐹𝑡):𝑧1-1-onto𝑡(𝐹𝑡):𝑧𝑡)
2724, 25, 263syl 18 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → (𝐹𝑡):𝑧𝑡)
28 simprll 778 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑥𝑧)
2927, 28ffvelrnd 6849 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ((𝐹𝑡)‘𝑥) ∈ 𝑡)
3021, 29sseldd 3895 . . . . . . . . . . . . 13 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ((𝐹𝑡)‘𝑥) ∈ 𝐵)
31 f1ocnvfv2 7032 . . . . . . . . . . . . . . 15 (((𝐹𝑡):𝑡1-1-onto𝑧𝑥𝑧) → ((𝐹𝑡)‘((𝐹𝑡)‘𝑥)) = 𝑥)
3224, 28, 31syl2anc 587 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ((𝐹𝑡)‘((𝐹𝑡)‘𝑥)) = 𝑥)
33 fvres 6682 . . . . . . . . . . . . . . 15 (((𝐹𝑡)‘𝑥) ∈ 𝑡 → ((𝐹𝑡)‘((𝐹𝑡)‘𝑥)) = (𝐹‘((𝐹𝑡)‘𝑥)))
3429, 33syl 17 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ((𝐹𝑡)‘((𝐹𝑡)‘𝑥)) = (𝐹‘((𝐹𝑡)‘𝑥)))
3532, 34eqtr3d 2795 . . . . . . . . . . . . 13 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑥 = (𝐹‘((𝐹𝑡)‘𝑥)))
36 fveq2 6663 . . . . . . . . . . . . . 14 (𝑦 = ((𝐹𝑡)‘𝑥) → (𝐹𝑦) = (𝐹‘((𝐹𝑡)‘𝑥)))
3736rspceeqv 3558 . . . . . . . . . . . . 13 ((((𝐹𝑡)‘𝑥) ∈ 𝐵𝑥 = (𝐹‘((𝐹𝑡)‘𝑥))) → ∃𝑦𝐵 𝑥 = (𝐹𝑦))
3830, 35, 37syl2anc 587 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ∃𝑦𝐵 𝑥 = (𝐹𝑦))
3938expr 460 . . . . . . . . . . 11 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → (𝑡𝑤 → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4039exlimdv 1934 . . . . . . . . . 10 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → (∃𝑡 𝑡𝑤 → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4113, 40mpd 15 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → ∃𝑦𝐵 𝑥 = (𝐹𝑦))
4241expr 460 . . . . . . . 8 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ 𝑥𝑧) → (𝑤 ∈ (𝑆𝑧) → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4342exlimdv 1934 . . . . . . 7 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ 𝑥𝑧) → (∃𝑤 𝑤 ∈ (𝑆𝑧) → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
449, 43syl5bi 245 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ 𝑥𝑧) → ((𝑆𝑧) ≠ ∅ → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4544expimpd 457 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) → ((𝑥𝑧 ∧ (𝑆𝑧) ≠ ∅) → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4645rexlimdva 3208 . . . 4 (𝐹 ∈ (𝐶 CovMap 𝐽) → (∃𝑧𝐽 (𝑥𝑧 ∧ (𝑆𝑧) ≠ ∅) → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
478, 46syld 47 . . 3 (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝑥𝑋 → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4847ralrimiv 3112 . 2 (𝐹 ∈ (𝐶 CovMap 𝐽) → ∀𝑥𝑋𝑦𝐵 𝑥 = (𝐹𝑦))
49 dffo3 6865 . 2 (𝐹:𝐵onto𝑋 ↔ (𝐹:𝐵𝑋 ∧ ∀𝑥𝑋𝑦𝐵 𝑥 = (𝐹𝑦)))
505, 48, 49sylanbrc 586 1 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵onto𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2951  wral 3070  wrex 3071  {crab 3074  cdif 3857  cin 3859  wss 3860  c0 4227  𝒫 cpw 4497  {csn 4525   cuni 4801  cmpt 5116  ccnv 5527  cres 5530  cima 5531  wf 6336  ontowfo 6338  1-1-ontowf1o 6339  cfv 6340  (class class class)co 7156  t crest 16765   Cn ccn 21937  Homeochmeo 22466   CovMap ccvm 32745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-map 8424  df-en 8541  df-fin 8544  df-fi 8921  df-rest 16767  df-topgen 16788  df-top 21607  df-topon 21624  df-bases 21659  df-cn 21940  df-hmeo 22468  df-cvm 32746
This theorem is referenced by:  cvmfo  32790
  Copyright terms: Public domain W3C validator