| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cvmcn 35268 | . . 3
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) | 
| 2 |  | cvmseu.1 | . . . 4
⊢ 𝐵 = ∪
𝐶 | 
| 3 |  | cvmfolem.2 | . . . 4
⊢ 𝑋 = ∪
𝐽 | 
| 4 | 2, 3 | cnf 23255 | . . 3
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶𝑋) | 
| 5 | 1, 4 | syl 17 | . 2
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵⟶𝑋) | 
| 6 |  | cvmcov.1 | . . . . . 6
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | 
| 7 | 6, 3 | cvmcov 35269 | . . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑥 ∈ 𝑋) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ (𝑆‘𝑧) ≠ ∅)) | 
| 8 | 7 | ex 412 | . . . 4
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝑥 ∈ 𝑋 → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ (𝑆‘𝑧) ≠ ∅))) | 
| 9 |  | n0 4352 | . . . . . . 7
⊢ ((𝑆‘𝑧) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑆‘𝑧)) | 
| 10 | 6 | cvmsn0 35274 | . . . . . . . . . . . 12
⊢ (𝑤 ∈ (𝑆‘𝑧) → 𝑤 ≠ ∅) | 
| 11 | 10 | ad2antll 729 | . . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ (𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧))) → 𝑤 ≠ ∅) | 
| 12 |  | n0 4352 | . . . . . . . . . . 11
⊢ (𝑤 ≠ ∅ ↔
∃𝑡 𝑡 ∈ 𝑤) | 
| 13 | 11, 12 | sylib 218 | . . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ (𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧))) → ∃𝑡 𝑡 ∈ 𝑤) | 
| 14 |  | simprlr 779 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝑤 ∈ (𝑆‘𝑧)) | 
| 15 | 6 | cvmsss 35273 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ (𝑆‘𝑧) → 𝑤 ⊆ 𝐶) | 
| 16 | 14, 15 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝑤 ⊆ 𝐶) | 
| 17 |  | simprr 772 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝑡 ∈ 𝑤) | 
| 18 | 16, 17 | sseldd 3983 | . . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝑡 ∈ 𝐶) | 
| 19 |  | elssuni 4936 | . . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝐶 → 𝑡 ⊆ ∪ 𝐶) | 
| 20 | 18, 19 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝑡 ⊆ ∪ 𝐶) | 
| 21 | 20, 2 | sseqtrrdi 4024 | . . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝑡 ⊆ 𝐵) | 
| 22 |  | simpll 766 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) | 
| 23 | 6 | cvmsf1o 35278 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑤 ∈ (𝑆‘𝑧) ∧ 𝑡 ∈ 𝑤) → (𝐹 ↾ 𝑡):𝑡–1-1-onto→𝑧) | 
| 24 | 22, 14, 17, 23 | syl3anc 1372 | . . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → (𝐹 ↾ 𝑡):𝑡–1-1-onto→𝑧) | 
| 25 |  | f1ocnv 6859 | . . . . . . . . . . . . . . . 16
⊢ ((𝐹 ↾ 𝑡):𝑡–1-1-onto→𝑧 → ◡(𝐹 ↾ 𝑡):𝑧–1-1-onto→𝑡) | 
| 26 |  | f1of 6847 | . . . . . . . . . . . . . . . 16
⊢ (◡(𝐹 ↾ 𝑡):𝑧–1-1-onto→𝑡 → ◡(𝐹 ↾ 𝑡):𝑧⟶𝑡) | 
| 27 | 24, 25, 26 | 3syl 18 | . . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → ◡(𝐹 ↾ 𝑡):𝑧⟶𝑡) | 
| 28 |  | simprll 778 | . . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝑥 ∈ 𝑧) | 
| 29 | 27, 28 | ffvelcdmd 7104 | . . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → (◡(𝐹 ↾ 𝑡)‘𝑥) ∈ 𝑡) | 
| 30 | 21, 29 | sseldd 3983 | . . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → (◡(𝐹 ↾ 𝑡)‘𝑥) ∈ 𝐵) | 
| 31 |  | f1ocnvfv2 7298 | . . . . . . . . . . . . . . 15
⊢ (((𝐹 ↾ 𝑡):𝑡–1-1-onto→𝑧 ∧ 𝑥 ∈ 𝑧) → ((𝐹 ↾ 𝑡)‘(◡(𝐹 ↾ 𝑡)‘𝑥)) = 𝑥) | 
| 32 | 24, 28, 31 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → ((𝐹 ↾ 𝑡)‘(◡(𝐹 ↾ 𝑡)‘𝑥)) = 𝑥) | 
| 33 |  | fvres 6924 | . . . . . . . . . . . . . . 15
⊢ ((◡(𝐹 ↾ 𝑡)‘𝑥) ∈ 𝑡 → ((𝐹 ↾ 𝑡)‘(◡(𝐹 ↾ 𝑡)‘𝑥)) = (𝐹‘(◡(𝐹 ↾ 𝑡)‘𝑥))) | 
| 34 | 29, 33 | syl 17 | . . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → ((𝐹 ↾ 𝑡)‘(◡(𝐹 ↾ 𝑡)‘𝑥)) = (𝐹‘(◡(𝐹 ↾ 𝑡)‘𝑥))) | 
| 35 | 32, 34 | eqtr3d 2778 | . . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝑥 = (𝐹‘(◡(𝐹 ↾ 𝑡)‘𝑥))) | 
| 36 |  | fveq2 6905 | . . . . . . . . . . . . . 14
⊢ (𝑦 = (◡(𝐹 ↾ 𝑡)‘𝑥) → (𝐹‘𝑦) = (𝐹‘(◡(𝐹 ↾ 𝑡)‘𝑥))) | 
| 37 | 36 | rspceeqv 3644 | . . . . . . . . . . . . 13
⊢ (((◡(𝐹 ↾ 𝑡)‘𝑥) ∈ 𝐵 ∧ 𝑥 = (𝐹‘(◡(𝐹 ↾ 𝑡)‘𝑥))) → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦)) | 
| 38 | 30, 35, 37 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦)) | 
| 39 | 38 | expr 456 | . . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ (𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧))) → (𝑡 ∈ 𝑤 → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) | 
| 40 | 39 | exlimdv 1932 | . . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ (𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧))) → (∃𝑡 𝑡 ∈ 𝑤 → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) | 
| 41 | 13, 40 | mpd 15 | . . . . . . . . 9
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ (𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧))) → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦)) | 
| 42 | 41 | expr 456 | . . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ 𝑥 ∈ 𝑧) → (𝑤 ∈ (𝑆‘𝑧) → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) | 
| 43 | 42 | exlimdv 1932 | . . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ 𝑥 ∈ 𝑧) → (∃𝑤 𝑤 ∈ (𝑆‘𝑧) → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) | 
| 44 | 9, 43 | biimtrid 242 | . . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ 𝑥 ∈ 𝑧) → ((𝑆‘𝑧) ≠ ∅ → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) | 
| 45 | 44 | expimpd 453 | . . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) → ((𝑥 ∈ 𝑧 ∧ (𝑆‘𝑧) ≠ ∅) → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) | 
| 46 | 45 | rexlimdva 3154 | . . . 4
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → (∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ (𝑆‘𝑧) ≠ ∅) → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) | 
| 47 | 8, 46 | syld 47 | . . 3
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝑥 ∈ 𝑋 → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) | 
| 48 | 47 | ralrimiv 3144 | . 2
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦)) | 
| 49 |  | dffo3 7121 | . 2
⊢ (𝐹:𝐵–onto→𝑋 ↔ (𝐹:𝐵⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) | 
| 50 | 5, 48, 49 | sylanbrc 583 | 1
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵–onto→𝑋) |