Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmfolem Structured version   Visualization version   GIF version

Theorem cvmfolem 33241
Description: Lemma for cvmfo 33262. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmseu.1 𝐵 = 𝐶
cvmfolem.2 𝑋 = 𝐽
Assertion
Ref Expression
cvmfolem (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵onto𝑋)
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣   𝑘,𝐽,𝑠,𝑢,𝑣   𝑣,𝐵
Allowed substitution hints:   𝐵(𝑢,𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmfolem
Dummy variables 𝑡 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmcn 33224 . . 3 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
2 cvmseu.1 . . . 4 𝐵 = 𝐶
3 cvmfolem.2 . . . 4 𝑋 = 𝐽
42, 3cnf 22397 . . 3 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵𝑋)
51, 4syl 17 . 2 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵𝑋)
6 cvmcov.1 . . . . . 6 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
76, 3cvmcov 33225 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑥𝑋) → ∃𝑧𝐽 (𝑥𝑧 ∧ (𝑆𝑧) ≠ ∅))
87ex 413 . . . 4 (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝑥𝑋 → ∃𝑧𝐽 (𝑥𝑧 ∧ (𝑆𝑧) ≠ ∅)))
9 n0 4280 . . . . . . 7 ((𝑆𝑧) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑆𝑧))
106cvmsn0 33230 . . . . . . . . . . . 12 (𝑤 ∈ (𝑆𝑧) → 𝑤 ≠ ∅)
1110ad2antll 726 . . . . . . . . . . 11 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → 𝑤 ≠ ∅)
12 n0 4280 . . . . . . . . . . 11 (𝑤 ≠ ∅ ↔ ∃𝑡 𝑡𝑤)
1311, 12sylib 217 . . . . . . . . . 10 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → ∃𝑡 𝑡𝑤)
14 simprlr 777 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑤 ∈ (𝑆𝑧))
156cvmsss 33229 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝑆𝑧) → 𝑤𝐶)
1614, 15syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑤𝐶)
17 simprr 770 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑡𝑤)
1816, 17sseldd 3922 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑡𝐶)
19 elssuni 4871 . . . . . . . . . . . . . . . 16 (𝑡𝐶𝑡 𝐶)
2018, 19syl 17 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑡 𝐶)
2120, 2sseqtrrdi 3972 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑡𝐵)
22 simpll 764 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
236cvmsf1o 33234 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑤 ∈ (𝑆𝑧) ∧ 𝑡𝑤) → (𝐹𝑡):𝑡1-1-onto𝑧)
2422, 14, 17, 23syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → (𝐹𝑡):𝑡1-1-onto𝑧)
25 f1ocnv 6728 . . . . . . . . . . . . . . . 16 ((𝐹𝑡):𝑡1-1-onto𝑧(𝐹𝑡):𝑧1-1-onto𝑡)
26 f1of 6716 . . . . . . . . . . . . . . . 16 ((𝐹𝑡):𝑧1-1-onto𝑡(𝐹𝑡):𝑧𝑡)
2724, 25, 263syl 18 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → (𝐹𝑡):𝑧𝑡)
28 simprll 776 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑥𝑧)
2927, 28ffvelrnd 6962 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ((𝐹𝑡)‘𝑥) ∈ 𝑡)
3021, 29sseldd 3922 . . . . . . . . . . . . 13 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ((𝐹𝑡)‘𝑥) ∈ 𝐵)
31 f1ocnvfv2 7149 . . . . . . . . . . . . . . 15 (((𝐹𝑡):𝑡1-1-onto𝑧𝑥𝑧) → ((𝐹𝑡)‘((𝐹𝑡)‘𝑥)) = 𝑥)
3224, 28, 31syl2anc 584 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ((𝐹𝑡)‘((𝐹𝑡)‘𝑥)) = 𝑥)
33 fvres 6793 . . . . . . . . . . . . . . 15 (((𝐹𝑡)‘𝑥) ∈ 𝑡 → ((𝐹𝑡)‘((𝐹𝑡)‘𝑥)) = (𝐹‘((𝐹𝑡)‘𝑥)))
3429, 33syl 17 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ((𝐹𝑡)‘((𝐹𝑡)‘𝑥)) = (𝐹‘((𝐹𝑡)‘𝑥)))
3532, 34eqtr3d 2780 . . . . . . . . . . . . 13 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑥 = (𝐹‘((𝐹𝑡)‘𝑥)))
36 fveq2 6774 . . . . . . . . . . . . . 14 (𝑦 = ((𝐹𝑡)‘𝑥) → (𝐹𝑦) = (𝐹‘((𝐹𝑡)‘𝑥)))
3736rspceeqv 3575 . . . . . . . . . . . . 13 ((((𝐹𝑡)‘𝑥) ∈ 𝐵𝑥 = (𝐹‘((𝐹𝑡)‘𝑥))) → ∃𝑦𝐵 𝑥 = (𝐹𝑦))
3830, 35, 37syl2anc 584 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ∃𝑦𝐵 𝑥 = (𝐹𝑦))
3938expr 457 . . . . . . . . . . 11 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → (𝑡𝑤 → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4039exlimdv 1936 . . . . . . . . . 10 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → (∃𝑡 𝑡𝑤 → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4113, 40mpd 15 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → ∃𝑦𝐵 𝑥 = (𝐹𝑦))
4241expr 457 . . . . . . . 8 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ 𝑥𝑧) → (𝑤 ∈ (𝑆𝑧) → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4342exlimdv 1936 . . . . . . 7 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ 𝑥𝑧) → (∃𝑤 𝑤 ∈ (𝑆𝑧) → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
449, 43syl5bi 241 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ 𝑥𝑧) → ((𝑆𝑧) ≠ ∅ → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4544expimpd 454 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) → ((𝑥𝑧 ∧ (𝑆𝑧) ≠ ∅) → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4645rexlimdva 3213 . . . 4 (𝐹 ∈ (𝐶 CovMap 𝐽) → (∃𝑧𝐽 (𝑥𝑧 ∧ (𝑆𝑧) ≠ ∅) → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
478, 46syld 47 . . 3 (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝑥𝑋 → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4847ralrimiv 3102 . 2 (𝐹 ∈ (𝐶 CovMap 𝐽) → ∀𝑥𝑋𝑦𝐵 𝑥 = (𝐹𝑦))
49 dffo3 6978 . 2 (𝐹:𝐵onto𝑋 ↔ (𝐹:𝐵𝑋 ∧ ∀𝑥𝑋𝑦𝐵 𝑥 = (𝐹𝑦)))
505, 48, 49sylanbrc 583 1 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵onto𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  cdif 3884  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   cuni 4839  cmpt 5157  ccnv 5588  cres 5591  cima 5592  wf 6429  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  t crest 17131   Cn ccn 22375  Homeochmeo 22904   CovMap ccvm 33217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-map 8617  df-en 8734  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378  df-hmeo 22906  df-cvm 33218
This theorem is referenced by:  cvmfo  33262
  Copyright terms: Public domain W3C validator