Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmfolem Structured version   Visualization version   GIF version

Theorem cvmfolem 35259
Description: Lemma for cvmfo 35280. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmseu.1 𝐵 = 𝐶
cvmfolem.2 𝑋 = 𝐽
Assertion
Ref Expression
cvmfolem (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵onto𝑋)
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣   𝑘,𝐽,𝑠,𝑢,𝑣   𝑣,𝐵
Allowed substitution hints:   𝐵(𝑢,𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmfolem
Dummy variables 𝑡 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmcn 35242 . . 3 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
2 cvmseu.1 . . . 4 𝐵 = 𝐶
3 cvmfolem.2 . . . 4 𝑋 = 𝐽
42, 3cnf 23201 . . 3 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵𝑋)
51, 4syl 17 . 2 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵𝑋)
6 cvmcov.1 . . . . . 6 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
76, 3cvmcov 35243 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑥𝑋) → ∃𝑧𝐽 (𝑥𝑧 ∧ (𝑆𝑧) ≠ ∅))
87ex 412 . . . 4 (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝑥𝑋 → ∃𝑧𝐽 (𝑥𝑧 ∧ (𝑆𝑧) ≠ ∅)))
9 n0 4333 . . . . . . 7 ((𝑆𝑧) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑆𝑧))
106cvmsn0 35248 . . . . . . . . . . . 12 (𝑤 ∈ (𝑆𝑧) → 𝑤 ≠ ∅)
1110ad2antll 729 . . . . . . . . . . 11 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → 𝑤 ≠ ∅)
12 n0 4333 . . . . . . . . . . 11 (𝑤 ≠ ∅ ↔ ∃𝑡 𝑡𝑤)
1311, 12sylib 218 . . . . . . . . . 10 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → ∃𝑡 𝑡𝑤)
14 simprlr 779 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑤 ∈ (𝑆𝑧))
156cvmsss 35247 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝑆𝑧) → 𝑤𝐶)
1614, 15syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑤𝐶)
17 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑡𝑤)
1816, 17sseldd 3964 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑡𝐶)
19 elssuni 4917 . . . . . . . . . . . . . . . 16 (𝑡𝐶𝑡 𝐶)
2018, 19syl 17 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑡 𝐶)
2120, 2sseqtrrdi 4005 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑡𝐵)
22 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
236cvmsf1o 35252 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑤 ∈ (𝑆𝑧) ∧ 𝑡𝑤) → (𝐹𝑡):𝑡1-1-onto𝑧)
2422, 14, 17, 23syl3anc 1372 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → (𝐹𝑡):𝑡1-1-onto𝑧)
25 f1ocnv 6840 . . . . . . . . . . . . . . . 16 ((𝐹𝑡):𝑡1-1-onto𝑧(𝐹𝑡):𝑧1-1-onto𝑡)
26 f1of 6828 . . . . . . . . . . . . . . . 16 ((𝐹𝑡):𝑧1-1-onto𝑡(𝐹𝑡):𝑧𝑡)
2724, 25, 263syl 18 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → (𝐹𝑡):𝑧𝑡)
28 simprll 778 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑥𝑧)
2927, 28ffvelcdmd 7085 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ((𝐹𝑡)‘𝑥) ∈ 𝑡)
3021, 29sseldd 3964 . . . . . . . . . . . . 13 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ((𝐹𝑡)‘𝑥) ∈ 𝐵)
31 f1ocnvfv2 7279 . . . . . . . . . . . . . . 15 (((𝐹𝑡):𝑡1-1-onto𝑧𝑥𝑧) → ((𝐹𝑡)‘((𝐹𝑡)‘𝑥)) = 𝑥)
3224, 28, 31syl2anc 584 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ((𝐹𝑡)‘((𝐹𝑡)‘𝑥)) = 𝑥)
33 fvres 6905 . . . . . . . . . . . . . . 15 (((𝐹𝑡)‘𝑥) ∈ 𝑡 → ((𝐹𝑡)‘((𝐹𝑡)‘𝑥)) = (𝐹‘((𝐹𝑡)‘𝑥)))
3429, 33syl 17 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ((𝐹𝑡)‘((𝐹𝑡)‘𝑥)) = (𝐹‘((𝐹𝑡)‘𝑥)))
3532, 34eqtr3d 2771 . . . . . . . . . . . . 13 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑥 = (𝐹‘((𝐹𝑡)‘𝑥)))
36 fveq2 6886 . . . . . . . . . . . . . 14 (𝑦 = ((𝐹𝑡)‘𝑥) → (𝐹𝑦) = (𝐹‘((𝐹𝑡)‘𝑥)))
3736rspceeqv 3628 . . . . . . . . . . . . 13 ((((𝐹𝑡)‘𝑥) ∈ 𝐵𝑥 = (𝐹‘((𝐹𝑡)‘𝑥))) → ∃𝑦𝐵 𝑥 = (𝐹𝑦))
3830, 35, 37syl2anc 584 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ∃𝑦𝐵 𝑥 = (𝐹𝑦))
3938expr 456 . . . . . . . . . . 11 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → (𝑡𝑤 → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4039exlimdv 1932 . . . . . . . . . 10 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → (∃𝑡 𝑡𝑤 → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4113, 40mpd 15 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → ∃𝑦𝐵 𝑥 = (𝐹𝑦))
4241expr 456 . . . . . . . 8 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ 𝑥𝑧) → (𝑤 ∈ (𝑆𝑧) → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4342exlimdv 1932 . . . . . . 7 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ 𝑥𝑧) → (∃𝑤 𝑤 ∈ (𝑆𝑧) → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
449, 43biimtrid 242 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ 𝑥𝑧) → ((𝑆𝑧) ≠ ∅ → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4544expimpd 453 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) → ((𝑥𝑧 ∧ (𝑆𝑧) ≠ ∅) → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4645rexlimdva 3142 . . . 4 (𝐹 ∈ (𝐶 CovMap 𝐽) → (∃𝑧𝐽 (𝑥𝑧 ∧ (𝑆𝑧) ≠ ∅) → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
478, 46syld 47 . . 3 (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝑥𝑋 → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4847ralrimiv 3132 . 2 (𝐹 ∈ (𝐶 CovMap 𝐽) → ∀𝑥𝑋𝑦𝐵 𝑥 = (𝐹𝑦))
49 dffo3 7102 . 2 (𝐹:𝐵onto𝑋 ↔ (𝐹:𝐵𝑋 ∧ ∀𝑥𝑋𝑦𝐵 𝑥 = (𝐹𝑦)))
505, 48, 49sylanbrc 583 1 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵onto𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2931  wral 3050  wrex 3059  {crab 3419  cdif 3928  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606   cuni 4887  cmpt 5205  ccnv 5664  cres 5667  cima 5668  wf 6537  ontowfo 6539  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  t crest 17437   Cn ccn 23179  Homeochmeo 23708   CovMap ccvm 35235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-map 8850  df-en 8968  df-fin 8971  df-fi 9433  df-rest 17439  df-topgen 17460  df-top 22849  df-topon 22866  df-bases 22901  df-cn 23182  df-hmeo 23710  df-cvm 35236
This theorem is referenced by:  cvmfo  35280
  Copyright terms: Public domain W3C validator