Step | Hyp | Ref
| Expression |
1 | | cvmcn 33224 |
. . 3
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
2 | | cvmseu.1 |
. . . 4
⊢ 𝐵 = ∪
𝐶 |
3 | | cvmfolem.2 |
. . . 4
⊢ 𝑋 = ∪
𝐽 |
4 | 2, 3 | cnf 22397 |
. . 3
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶𝑋) |
5 | 1, 4 | syl 17 |
. 2
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵⟶𝑋) |
6 | | cvmcov.1 |
. . . . . 6
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
7 | 6, 3 | cvmcov 33225 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑥 ∈ 𝑋) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ (𝑆‘𝑧) ≠ ∅)) |
8 | 7 | ex 413 |
. . . 4
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝑥 ∈ 𝑋 → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ (𝑆‘𝑧) ≠ ∅))) |
9 | | n0 4280 |
. . . . . . 7
⊢ ((𝑆‘𝑧) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑆‘𝑧)) |
10 | 6 | cvmsn0 33230 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ (𝑆‘𝑧) → 𝑤 ≠ ∅) |
11 | 10 | ad2antll 726 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ (𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧))) → 𝑤 ≠ ∅) |
12 | | n0 4280 |
. . . . . . . . . . 11
⊢ (𝑤 ≠ ∅ ↔
∃𝑡 𝑡 ∈ 𝑤) |
13 | 11, 12 | sylib 217 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ (𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧))) → ∃𝑡 𝑡 ∈ 𝑤) |
14 | | simprlr 777 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝑤 ∈ (𝑆‘𝑧)) |
15 | 6 | cvmsss 33229 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ (𝑆‘𝑧) → 𝑤 ⊆ 𝐶) |
16 | 14, 15 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝑤 ⊆ 𝐶) |
17 | | simprr 770 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝑡 ∈ 𝑤) |
18 | 16, 17 | sseldd 3922 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝑡 ∈ 𝐶) |
19 | | elssuni 4871 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝐶 → 𝑡 ⊆ ∪ 𝐶) |
20 | 18, 19 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝑡 ⊆ ∪ 𝐶) |
21 | 20, 2 | sseqtrrdi 3972 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝑡 ⊆ 𝐵) |
22 | | simpll 764 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
23 | 6 | cvmsf1o 33234 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑤 ∈ (𝑆‘𝑧) ∧ 𝑡 ∈ 𝑤) → (𝐹 ↾ 𝑡):𝑡–1-1-onto→𝑧) |
24 | 22, 14, 17, 23 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → (𝐹 ↾ 𝑡):𝑡–1-1-onto→𝑧) |
25 | | f1ocnv 6728 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ↾ 𝑡):𝑡–1-1-onto→𝑧 → ◡(𝐹 ↾ 𝑡):𝑧–1-1-onto→𝑡) |
26 | | f1of 6716 |
. . . . . . . . . . . . . . . 16
⊢ (◡(𝐹 ↾ 𝑡):𝑧–1-1-onto→𝑡 → ◡(𝐹 ↾ 𝑡):𝑧⟶𝑡) |
27 | 24, 25, 26 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → ◡(𝐹 ↾ 𝑡):𝑧⟶𝑡) |
28 | | simprll 776 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝑥 ∈ 𝑧) |
29 | 27, 28 | ffvelrnd 6962 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → (◡(𝐹 ↾ 𝑡)‘𝑥) ∈ 𝑡) |
30 | 21, 29 | sseldd 3922 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → (◡(𝐹 ↾ 𝑡)‘𝑥) ∈ 𝐵) |
31 | | f1ocnvfv2 7149 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ↾ 𝑡):𝑡–1-1-onto→𝑧 ∧ 𝑥 ∈ 𝑧) → ((𝐹 ↾ 𝑡)‘(◡(𝐹 ↾ 𝑡)‘𝑥)) = 𝑥) |
32 | 24, 28, 31 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → ((𝐹 ↾ 𝑡)‘(◡(𝐹 ↾ 𝑡)‘𝑥)) = 𝑥) |
33 | | fvres 6793 |
. . . . . . . . . . . . . . 15
⊢ ((◡(𝐹 ↾ 𝑡)‘𝑥) ∈ 𝑡 → ((𝐹 ↾ 𝑡)‘(◡(𝐹 ↾ 𝑡)‘𝑥)) = (𝐹‘(◡(𝐹 ↾ 𝑡)‘𝑥))) |
34 | 29, 33 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → ((𝐹 ↾ 𝑡)‘(◡(𝐹 ↾ 𝑡)‘𝑥)) = (𝐹‘(◡(𝐹 ↾ 𝑡)‘𝑥))) |
35 | 32, 34 | eqtr3d 2780 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → 𝑥 = (𝐹‘(◡(𝐹 ↾ 𝑡)‘𝑥))) |
36 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (◡(𝐹 ↾ 𝑡)‘𝑥) → (𝐹‘𝑦) = (𝐹‘(◡(𝐹 ↾ 𝑡)‘𝑥))) |
37 | 36 | rspceeqv 3575 |
. . . . . . . . . . . . 13
⊢ (((◡(𝐹 ↾ 𝑡)‘𝑥) ∈ 𝐵 ∧ 𝑥 = (𝐹‘(◡(𝐹 ↾ 𝑡)‘𝑥))) → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦)) |
38 | 30, 35, 37 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ ((𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧)) ∧ 𝑡 ∈ 𝑤)) → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦)) |
39 | 38 | expr 457 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ (𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧))) → (𝑡 ∈ 𝑤 → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) |
40 | 39 | exlimdv 1936 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ (𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧))) → (∃𝑡 𝑡 ∈ 𝑤 → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) |
41 | 13, 40 | mpd 15 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ (𝑥 ∈ 𝑧 ∧ 𝑤 ∈ (𝑆‘𝑧))) → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦)) |
42 | 41 | expr 457 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ 𝑥 ∈ 𝑧) → (𝑤 ∈ (𝑆‘𝑧) → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) |
43 | 42 | exlimdv 1936 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ 𝑥 ∈ 𝑧) → (∃𝑤 𝑤 ∈ (𝑆‘𝑧) → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) |
44 | 9, 43 | syl5bi 241 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) ∧ 𝑥 ∈ 𝑧) → ((𝑆‘𝑧) ≠ ∅ → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) |
45 | 44 | expimpd 454 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧 ∈ 𝐽) → ((𝑥 ∈ 𝑧 ∧ (𝑆‘𝑧) ≠ ∅) → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) |
46 | 45 | rexlimdva 3213 |
. . . 4
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → (∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ (𝑆‘𝑧) ≠ ∅) → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) |
47 | 8, 46 | syld 47 |
. . 3
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝑥 ∈ 𝑋 → ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) |
48 | 47 | ralrimiv 3102 |
. 2
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦)) |
49 | | dffo3 6978 |
. 2
⊢ (𝐹:𝐵–onto→𝑋 ↔ (𝐹:𝐵⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) |
50 | 5, 48, 49 | sylanbrc 583 |
1
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵–onto→𝑋) |