MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubth Structured version   Visualization version   GIF version

Theorem ubth 30853
Description: Uniform Boundedness Theorem, also called the Banach-Steinhaus Theorem. Let 𝑇 be a collection of bounded linear operators on a Banach space. If, for every vector 𝑥, the norms of the operators' values are bounded, then the operators' norms are also bounded. Theorem 4.7-3 of [Kreyszig] p. 249. See also http://en.wikipedia.org/wiki/Uniform_boundedness_principle. (Contributed by NM, 7-Nov-2007.) (Proof shortened by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1 𝑋 = (BaseSet‘𝑈)
ubth.2 𝑁 = (normCV𝑊)
ubth.3 𝑀 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
ubth ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑))
Distinct variable groups:   𝑥,𝑐,𝑡,𝑑,𝑁   𝑇,𝑐,𝑑,𝑡,𝑥   𝑈,𝑐,𝑑,𝑡,𝑥   𝑊,𝑐,𝑑,𝑡,𝑥   𝑋,𝑐,𝑑,𝑡,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑡,𝑐,𝑑)

Proof of Theorem ubth
StepHypRef Expression
1 oveq1 7353 . . . . 5 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 BLnOp 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊))
21sseq2d 3962 . . . 4 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 ⊆ (𝑈 BLnOp 𝑊) ↔ 𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊)))
3 ubth.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
4 fveq2 6822 . . . . . . 7 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
53, 4eqtrid 2778 . . . . . 6 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑋 = (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
65raleqdv 3292 . . . . 5 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
7 ubth.3 . . . . . . . . 9 𝑀 = (𝑈 normOpOLD 𝑊)
8 oveq1 7353 . . . . . . . . 9 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 normOpOLD 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊))
97, 8eqtrid 2778 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑀 = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊))
109fveq1d 6824 . . . . . . 7 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑀𝑡) = ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡))
1110breq1d 5099 . . . . . 6 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑀𝑡) ≤ 𝑑 ↔ ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
1211rexralbidv 3198 . . . . 5 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
136, 12bibi12d 345 . . . 4 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑) ↔ (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑)))
142, 13imbi12d 344 . . 3 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇 ⊆ (𝑈 BLnOp 𝑊) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑)) ↔ (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑))))
15 oveq2 7354 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
1615sseq2d 3962 . . . 4 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) ↔ 𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))))
17 ubth.2 . . . . . . . . . 10 𝑁 = (normCV𝑊)
18 fveq2 6822 . . . . . . . . . 10 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (normCV𝑊) = (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
1917, 18eqtrid 2778 . . . . . . . . 9 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → 𝑁 = (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
2019fveq1d 6824 . . . . . . . 8 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (𝑁‘(𝑡𝑥)) = ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)))
2120breq1d 5099 . . . . . . 7 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐))
2221rexralbidv 3198 . . . . . 6 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐))
2322ralbidv 3155 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐))
24 oveq2 7354 . . . . . . . 8 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
2524fveq1d 6824 . . . . . . 7 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) = ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡))
2625breq1d 5099 . . . . . 6 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑 ↔ ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))
2726rexralbidv 3198 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))
2823, 27bibi12d 345 . . . 4 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑) ↔ (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑)))
2916, 28imbi12d 344 . . 3 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) ↔ (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))))
30 eqid 2731 . . . 4 (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
31 eqid 2731 . . . 4 (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) = (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))
32 eqid 2731 . . . 4 (IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
33 eqid 2731 . . . 4 (MetOpen‘(IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) = (MetOpen‘(IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
34 eqid 2731 . . . . . 6 ⟨⟨ + , · ⟩, abs⟩ = ⟨⟨ + , · ⟩, abs⟩
3534cnbn 30849 . . . . 5 ⟨⟨ + , · ⟩, abs⟩ ∈ CBan
3635elimel 4542 . . . 4 if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ CBan
37 elimnvu 30664 . . . 4 if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) ∈ NrmCVec
38 id 22 . . . 4 (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → 𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
3930, 31, 32, 33, 36, 37, 38ubthlem3 30852 . . 3 (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))
4014, 29, 39dedth2h 4532 . 2 ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec) → (𝑇 ⊆ (𝑈 BLnOp 𝑊) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑)))
41403impia 1117 1 ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897  ifcif 4472  cop 4579   class class class wbr 5089  cfv 6481  (class class class)co 7346  cr 11005   + caddc 11009   · cmul 11011  cle 11147  abscabs 15141  MetOpencmopn 21281  NrmCVeccnv 30564  BaseSetcba 30566  normCVcnmcv 30570  IndMetcims 30571   normOpOLD cnmoo 30721   BLnOp cblo 30722  CBanccbn 30842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-dc 10337  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-cn 23142  df-cnp 23143  df-lm 23144  df-haus 23230  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-fcls 23856  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-cfil 25182  df-cau 25183  df-cmet 25184  df-grpo 30473  df-gid 30474  df-ginv 30475  df-gdiv 30476  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-vs 30579  df-nmcv 30580  df-ims 30581  df-lno 30724  df-nmoo 30725  df-blo 30726  df-0o 30727  df-cbn 30843
This theorem is referenced by:  htthlem  30897
  Copyright terms: Public domain W3C validator