MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubth Structured version   Visualization version   GIF version

Theorem ubth 28652
Description: Uniform Boundedness Theorem, also called the Banach-Steinhaus Theorem. Let 𝑇 be a collection of bounded linear operators on a Banach space. If, for every vector 𝑥, the norms of the operators' values are bounded, then the operators' norms are also bounded. Theorem 4.7-3 of [Kreyszig] p. 249. See also http://en.wikipedia.org/wiki/Uniform_boundedness_principle. (Contributed by NM, 7-Nov-2007.) (Proof shortened by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1 𝑋 = (BaseSet‘𝑈)
ubth.2 𝑁 = (normCV𝑊)
ubth.3 𝑀 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
ubth ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑))
Distinct variable groups:   𝑥,𝑐,𝑡,𝑑,𝑁   𝑇,𝑐,𝑑,𝑡,𝑥   𝑈,𝑐,𝑑,𝑡,𝑥   𝑊,𝑐,𝑑,𝑡,𝑥   𝑋,𝑐,𝑑,𝑡,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑡,𝑐,𝑑)

Proof of Theorem ubth
StepHypRef Expression
1 oveq1 7165 . . . . 5 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 BLnOp 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊))
21sseq2d 4001 . . . 4 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 ⊆ (𝑈 BLnOp 𝑊) ↔ 𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊)))
3 ubth.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
4 fveq2 6672 . . . . . . 7 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
53, 4syl5eq 2870 . . . . . 6 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑋 = (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
65raleqdv 3417 . . . . 5 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
7 ubth.3 . . . . . . . . 9 𝑀 = (𝑈 normOpOLD 𝑊)
8 oveq1 7165 . . . . . . . . 9 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 normOpOLD 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊))
97, 8syl5eq 2870 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑀 = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊))
109fveq1d 6674 . . . . . . 7 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑀𝑡) = ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡))
1110breq1d 5078 . . . . . 6 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑀𝑡) ≤ 𝑑 ↔ ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
1211rexralbidv 3303 . . . . 5 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
136, 12bibi12d 348 . . . 4 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑) ↔ (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑)))
142, 13imbi12d 347 . . 3 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇 ⊆ (𝑈 BLnOp 𝑊) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑)) ↔ (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑))))
15 oveq2 7166 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
1615sseq2d 4001 . . . 4 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) ↔ 𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))))
17 ubth.2 . . . . . . . . . 10 𝑁 = (normCV𝑊)
18 fveq2 6672 . . . . . . . . . 10 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (normCV𝑊) = (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
1917, 18syl5eq 2870 . . . . . . . . 9 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → 𝑁 = (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
2019fveq1d 6674 . . . . . . . 8 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (𝑁‘(𝑡𝑥)) = ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)))
2120breq1d 5078 . . . . . . 7 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐))
2221rexralbidv 3303 . . . . . 6 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐))
2322ralbidv 3199 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐))
24 oveq2 7166 . . . . . . . 8 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
2524fveq1d 6674 . . . . . . 7 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) = ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡))
2625breq1d 5078 . . . . . 6 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑 ↔ ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))
2726rexralbidv 3303 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))
2823, 27bibi12d 348 . . . 4 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑) ↔ (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑)))
2916, 28imbi12d 347 . . 3 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) ↔ (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))))
30 eqid 2823 . . . 4 (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
31 eqid 2823 . . . 4 (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) = (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))
32 eqid 2823 . . . 4 (IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
33 eqid 2823 . . . 4 (MetOpen‘(IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) = (MetOpen‘(IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
34 eqid 2823 . . . . . 6 ⟨⟨ + , · ⟩, abs⟩ = ⟨⟨ + , · ⟩, abs⟩
3534cnbn 28648 . . . . 5 ⟨⟨ + , · ⟩, abs⟩ ∈ CBan
3635elimel 4536 . . . 4 if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ CBan
37 elimnvu 28463 . . . 4 if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) ∈ NrmCVec
38 id 22 . . . 4 (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → 𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
3930, 31, 32, 33, 36, 37, 38ubthlem3 28651 . . 3 (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))
4014, 29, 39dedth2h 4526 . 2 ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec) → (𝑇 ⊆ (𝑈 BLnOp 𝑊) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑)))
41403impia 1113 1 ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141  wss 3938  ifcif 4469  cop 4575   class class class wbr 5068  cfv 6357  (class class class)co 7158  cr 10538   + caddc 10542   · cmul 10544  cle 10678  abscabs 14595  MetOpencmopn 20537  NrmCVeccnv 28363  BaseSetcba 28365  normCVcnmcv 28369  IndMetcims 28370   normOpOLD cnmoo 28520   BLnOp cblo 28521  CBanccbn 28641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-dc 9870  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-cn 21837  df-cnp 21838  df-lm 21839  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-fcls 22551  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-cfil 23860  df-cau 23861  df-cmet 23862  df-grpo 28272  df-gid 28273  df-ginv 28274  df-gdiv 28275  df-ablo 28324  df-vc 28338  df-nv 28371  df-va 28374  df-ba 28375  df-sm 28376  df-0v 28377  df-vs 28378  df-nmcv 28379  df-ims 28380  df-lno 28523  df-nmoo 28524  df-blo 28525  df-0o 28526  df-cbn 28642
This theorem is referenced by:  htthlem  28696
  Copyright terms: Public domain W3C validator