MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubth Structured version   Visualization version   GIF version

Theorem ubth 30905
Description: Uniform Boundedness Theorem, also called the Banach-Steinhaus Theorem. Let 𝑇 be a collection of bounded linear operators on a Banach space. If, for every vector 𝑥, the norms of the operators' values are bounded, then the operators' norms are also bounded. Theorem 4.7-3 of [Kreyszig] p. 249. See also http://en.wikipedia.org/wiki/Uniform_boundedness_principle. (Contributed by NM, 7-Nov-2007.) (Proof shortened by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1 𝑋 = (BaseSet‘𝑈)
ubth.2 𝑁 = (normCV𝑊)
ubth.3 𝑀 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
ubth ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑))
Distinct variable groups:   𝑥,𝑐,𝑡,𝑑,𝑁   𝑇,𝑐,𝑑,𝑡,𝑥   𝑈,𝑐,𝑑,𝑡,𝑥   𝑊,𝑐,𝑑,𝑡,𝑥   𝑋,𝑐,𝑑,𝑡,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑡,𝑐,𝑑)

Proof of Theorem ubth
StepHypRef Expression
1 oveq1 7455 . . . . 5 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 BLnOp 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊))
21sseq2d 4041 . . . 4 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 ⊆ (𝑈 BLnOp 𝑊) ↔ 𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊)))
3 ubth.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
4 fveq2 6920 . . . . . . 7 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
53, 4eqtrid 2792 . . . . . 6 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑋 = (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
65raleqdv 3334 . . . . 5 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
7 ubth.3 . . . . . . . . 9 𝑀 = (𝑈 normOpOLD 𝑊)
8 oveq1 7455 . . . . . . . . 9 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 normOpOLD 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊))
97, 8eqtrid 2792 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑀 = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊))
109fveq1d 6922 . . . . . . 7 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑀𝑡) = ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡))
1110breq1d 5176 . . . . . 6 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑀𝑡) ≤ 𝑑 ↔ ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
1211rexralbidv 3229 . . . . 5 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
136, 12bibi12d 345 . . . 4 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑) ↔ (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑)))
142, 13imbi12d 344 . . 3 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇 ⊆ (𝑈 BLnOp 𝑊) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑)) ↔ (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑))))
15 oveq2 7456 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
1615sseq2d 4041 . . . 4 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) ↔ 𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))))
17 ubth.2 . . . . . . . . . 10 𝑁 = (normCV𝑊)
18 fveq2 6920 . . . . . . . . . 10 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (normCV𝑊) = (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
1917, 18eqtrid 2792 . . . . . . . . 9 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → 𝑁 = (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
2019fveq1d 6922 . . . . . . . 8 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (𝑁‘(𝑡𝑥)) = ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)))
2120breq1d 5176 . . . . . . 7 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐))
2221rexralbidv 3229 . . . . . 6 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐))
2322ralbidv 3184 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐))
24 oveq2 7456 . . . . . . . 8 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
2524fveq1d 6922 . . . . . . 7 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) = ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡))
2625breq1d 5176 . . . . . 6 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑 ↔ ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))
2726rexralbidv 3229 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))
2823, 27bibi12d 345 . . . 4 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑) ↔ (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑)))
2916, 28imbi12d 344 . . 3 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) ↔ (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))))
30 eqid 2740 . . . 4 (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
31 eqid 2740 . . . 4 (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) = (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))
32 eqid 2740 . . . 4 (IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
33 eqid 2740 . . . 4 (MetOpen‘(IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) = (MetOpen‘(IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
34 eqid 2740 . . . . . 6 ⟨⟨ + , · ⟩, abs⟩ = ⟨⟨ + , · ⟩, abs⟩
3534cnbn 30901 . . . . 5 ⟨⟨ + , · ⟩, abs⟩ ∈ CBan
3635elimel 4617 . . . 4 if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ CBan
37 elimnvu 30716 . . . 4 if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) ∈ NrmCVec
38 id 22 . . . 4 (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → 𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
3930, 31, 32, 33, 36, 37, 38ubthlem3 30904 . . 3 (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))
4014, 29, 39dedth2h 4607 . 2 ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec) → (𝑇 ⊆ (𝑈 BLnOp 𝑊) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑)))
41403impia 1117 1 ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976  ifcif 4548  cop 4654   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183   + caddc 11187   · cmul 11189  cle 11325  abscabs 15283  MetOpencmopn 21377  NrmCVeccnv 30616  BaseSetcba 30618  normCVcnmcv 30622  IndMetcims 30623   normOpOLD cnmoo 30773   BLnOp cblo 30774  CBanccbn 30894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-dc 10515  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-lm 23258  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-fcls 23970  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-cfil 25308  df-cau 25309  df-cmet 25310  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-lno 30776  df-nmoo 30777  df-blo 30778  df-0o 30779  df-cbn 30895
This theorem is referenced by:  htthlem  30949
  Copyright terms: Public domain W3C validator