MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubth Structured version   Visualization version   GIF version

Theorem ubth 30798
Description: Uniform Boundedness Theorem, also called the Banach-Steinhaus Theorem. Let 𝑇 be a collection of bounded linear operators on a Banach space. If, for every vector 𝑥, the norms of the operators' values are bounded, then the operators' norms are also bounded. Theorem 4.7-3 of [Kreyszig] p. 249. See also http://en.wikipedia.org/wiki/Uniform_boundedness_principle. (Contributed by NM, 7-Nov-2007.) (Proof shortened by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1 𝑋 = (BaseSet‘𝑈)
ubth.2 𝑁 = (normCV𝑊)
ubth.3 𝑀 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
ubth ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑))
Distinct variable groups:   𝑥,𝑐,𝑡,𝑑,𝑁   𝑇,𝑐,𝑑,𝑡,𝑥   𝑈,𝑐,𝑑,𝑡,𝑥   𝑊,𝑐,𝑑,𝑡,𝑥   𝑋,𝑐,𝑑,𝑡,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑡,𝑐,𝑑)

Proof of Theorem ubth
StepHypRef Expression
1 oveq1 7430 . . . . 5 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 BLnOp 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊))
21sseq2d 4011 . . . 4 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 ⊆ (𝑈 BLnOp 𝑊) ↔ 𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊)))
3 ubth.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
4 fveq2 6900 . . . . . . 7 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
53, 4eqtrid 2777 . . . . . 6 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑋 = (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
65raleqdv 3314 . . . . 5 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
7 ubth.3 . . . . . . . . 9 𝑀 = (𝑈 normOpOLD 𝑊)
8 oveq1 7430 . . . . . . . . 9 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 normOpOLD 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊))
97, 8eqtrid 2777 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑀 = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊))
109fveq1d 6902 . . . . . . 7 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑀𝑡) = ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡))
1110breq1d 5162 . . . . . 6 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑀𝑡) ≤ 𝑑 ↔ ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
1211rexralbidv 3210 . . . . 5 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
136, 12bibi12d 344 . . . 4 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑) ↔ (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑)))
142, 13imbi12d 343 . . 3 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇 ⊆ (𝑈 BLnOp 𝑊) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑)) ↔ (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑))))
15 oveq2 7431 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
1615sseq2d 4011 . . . 4 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) ↔ 𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))))
17 ubth.2 . . . . . . . . . 10 𝑁 = (normCV𝑊)
18 fveq2 6900 . . . . . . . . . 10 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (normCV𝑊) = (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
1917, 18eqtrid 2777 . . . . . . . . 9 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → 𝑁 = (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
2019fveq1d 6902 . . . . . . . 8 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (𝑁‘(𝑡𝑥)) = ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)))
2120breq1d 5162 . . . . . . 7 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐))
2221rexralbidv 3210 . . . . . 6 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐))
2322ralbidv 3167 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐))
24 oveq2 7431 . . . . . . . 8 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
2524fveq1d 6902 . . . . . . 7 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) = ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡))
2625breq1d 5162 . . . . . 6 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑 ↔ ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))
2726rexralbidv 3210 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))
2823, 27bibi12d 344 . . . 4 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑) ↔ (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑)))
2916, 28imbi12d 343 . . 3 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) ↔ (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))))
30 eqid 2725 . . . 4 (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
31 eqid 2725 . . . 4 (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) = (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))
32 eqid 2725 . . . 4 (IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
33 eqid 2725 . . . 4 (MetOpen‘(IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) = (MetOpen‘(IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
34 eqid 2725 . . . . . 6 ⟨⟨ + , · ⟩, abs⟩ = ⟨⟨ + , · ⟩, abs⟩
3534cnbn 30794 . . . . 5 ⟨⟨ + , · ⟩, abs⟩ ∈ CBan
3635elimel 4601 . . . 4 if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ CBan
37 elimnvu 30609 . . . 4 if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) ∈ NrmCVec
38 id 22 . . . 4 (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → 𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
3930, 31, 32, 33, 36, 37, 38ubthlem3 30797 . . 3 (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))
4014, 29, 39dedth2h 4591 . 2 ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec) → (𝑇 ⊆ (𝑈 BLnOp 𝑊) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑)))
41403impia 1114 1 ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wrex 3059  wss 3946  ifcif 4532  cop 4638   class class class wbr 5152  cfv 6553  (class class class)co 7423  cr 11153   + caddc 11157   · cmul 11159  cle 11295  abscabs 15234  MetOpencmopn 21325  NrmCVeccnv 30509  BaseSetcba 30511  normCVcnmcv 30515  IndMetcims 30516   normOpOLD cnmoo 30666   BLnOp cblo 30667  CBanccbn 30787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-inf2 9680  ax-dc 10485  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231  ax-pre-sup 11232  ax-addf 11233  ax-mulf 11234
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-se 5637  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-of 7689  df-om 7876  df-1st 8002  df-2nd 8003  df-supp 8174  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-2o 8496  df-er 8733  df-map 8856  df-pm 8857  df-ixp 8926  df-en 8974  df-dom 8975  df-sdom 8976  df-fin 8977  df-fsupp 9402  df-fi 9450  df-sup 9481  df-inf 9482  df-oi 9549  df-card 9978  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-div 11918  df-nn 12260  df-2 12322  df-3 12323  df-4 12324  df-5 12325  df-6 12326  df-7 12327  df-8 12328  df-9 12329  df-n0 12520  df-z 12606  df-dec 12725  df-uz 12870  df-q 12980  df-rp 13024  df-xneg 13141  df-xadd 13142  df-xmul 13143  df-ioo 13377  df-ico 13379  df-icc 13380  df-fz 13534  df-fzo 13677  df-seq 14017  df-exp 14077  df-hash 14343  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-starv 17276  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-hom 17285  df-cco 17286  df-rest 17432  df-topn 17433  df-0g 17451  df-gsum 17452  df-topgen 17453  df-pt 17454  df-prds 17457  df-xrs 17512  df-qtop 17517  df-imas 17518  df-xps 17520  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-submnd 18769  df-mulg 19057  df-cntz 19306  df-cmn 19775  df-psmet 21327  df-xmet 21328  df-met 21329  df-bl 21330  df-mopn 21331  df-fbas 21332  df-fg 21333  df-cnfld 21336  df-top 22879  df-topon 22896  df-topsp 22918  df-bases 22932  df-cld 23006  df-ntr 23007  df-cls 23008  df-nei 23085  df-cn 23214  df-cnp 23215  df-lm 23216  df-haus 23302  df-cmp 23374  df-tx 23549  df-hmeo 23742  df-fil 23833  df-fm 23925  df-flim 23926  df-flf 23927  df-fcls 23928  df-xms 24309  df-ms 24310  df-tms 24311  df-cncf 24881  df-cfil 25266  df-cau 25267  df-cmet 25268  df-grpo 30418  df-gid 30419  df-ginv 30420  df-gdiv 30421  df-ablo 30470  df-vc 30484  df-nv 30517  df-va 30520  df-ba 30521  df-sm 30522  df-0v 30523  df-vs 30524  df-nmcv 30525  df-ims 30526  df-lno 30669  df-nmoo 30670  df-blo 30671  df-0o 30672  df-cbn 30788
This theorem is referenced by:  htthlem  30842
  Copyright terms: Public domain W3C validator