MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubth Structured version   Visualization version   GIF version

Theorem ubth 29243
Description: Uniform Boundedness Theorem, also called the Banach-Steinhaus Theorem. Let 𝑇 be a collection of bounded linear operators on a Banach space. If, for every vector 𝑥, the norms of the operators' values are bounded, then the operators' norms are also bounded. Theorem 4.7-3 of [Kreyszig] p. 249. See also http://en.wikipedia.org/wiki/Uniform_boundedness_principle. (Contributed by NM, 7-Nov-2007.) (Proof shortened by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1 𝑋 = (BaseSet‘𝑈)
ubth.2 𝑁 = (normCV𝑊)
ubth.3 𝑀 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
ubth ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑))
Distinct variable groups:   𝑥,𝑐,𝑡,𝑑,𝑁   𝑇,𝑐,𝑑,𝑡,𝑥   𝑈,𝑐,𝑑,𝑡,𝑥   𝑊,𝑐,𝑑,𝑡,𝑥   𝑋,𝑐,𝑑,𝑡,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑡,𝑐,𝑑)

Proof of Theorem ubth
StepHypRef Expression
1 oveq1 7274 . . . . 5 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 BLnOp 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊))
21sseq2d 3952 . . . 4 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 ⊆ (𝑈 BLnOp 𝑊) ↔ 𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊)))
3 ubth.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
4 fveq2 6766 . . . . . . 7 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
53, 4eqtrid 2790 . . . . . 6 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑋 = (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
65raleqdv 3346 . . . . 5 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
7 ubth.3 . . . . . . . . 9 𝑀 = (𝑈 normOpOLD 𝑊)
8 oveq1 7274 . . . . . . . . 9 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 normOpOLD 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊))
97, 8eqtrid 2790 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑀 = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊))
109fveq1d 6768 . . . . . . 7 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑀𝑡) = ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡))
1110breq1d 5083 . . . . . 6 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑀𝑡) ≤ 𝑑 ↔ ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
1211rexralbidv 3228 . . . . 5 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
136, 12bibi12d 346 . . . 4 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑) ↔ (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑)))
142, 13imbi12d 345 . . 3 (𝑈 = if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇 ⊆ (𝑈 BLnOp 𝑊) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑)) ↔ (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑))))
15 oveq2 7275 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
1615sseq2d 3952 . . . 4 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) ↔ 𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))))
17 ubth.2 . . . . . . . . . 10 𝑁 = (normCV𝑊)
18 fveq2 6766 . . . . . . . . . 10 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (normCV𝑊) = (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
1917, 18eqtrid 2790 . . . . . . . . 9 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → 𝑁 = (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
2019fveq1d 6768 . . . . . . . 8 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (𝑁‘(𝑡𝑥)) = ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)))
2120breq1d 5083 . . . . . . 7 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐))
2221rexralbidv 3228 . . . . . 6 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐))
2322ralbidv 3121 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐))
24 oveq2 7275 . . . . . . . 8 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊) = (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
2524fveq1d 6768 . . . . . . 7 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) = ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡))
2625breq1d 5083 . . . . . 6 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑 ↔ ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))
2726rexralbidv 3228 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))
2823, 27bibi12d 346 . . . 4 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑) ↔ (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑)))
2916, 28imbi12d 345 . . 3 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp 𝑊) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) ↔ (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))))
30 eqid 2738 . . . 4 (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
31 eqid 2738 . . . 4 (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) = (normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))
32 eqid 2738 . . . 4 (IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
33 eqid 2738 . . . 4 (MetOpen‘(IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) = (MetOpen‘(IndMet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
34 eqid 2738 . . . . . 6 ⟨⟨ + , · ⟩, abs⟩ = ⟨⟨ + , · ⟩, abs⟩
3534cnbn 29239 . . . . 5 ⟨⟨ + , · ⟩, abs⟩ ∈ CBan
3635elimel 4528 . . . 4 if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ CBan
37 elimnvu 29054 . . . 4 if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) ∈ NrmCVec
38 id 22 . . . 4 (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → 𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
3930, 31, 32, 33, 36, 37, 38ubthlem3 29242 . . 3 (𝑇 ⊆ (if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∃𝑐 ∈ ℝ ∀𝑡𝑇 ((normCV‘if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((if(𝑈 ∈ CBan, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑡) ≤ 𝑑))
4014, 29, 39dedth2h 4518 . 2 ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec) → (𝑇 ⊆ (𝑈 BLnOp 𝑊) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑)))
41403impia 1116 1 ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3886  ifcif 4459  cop 4567   class class class wbr 5073  cfv 6426  (class class class)co 7267  cr 10880   + caddc 10884   · cmul 10886  cle 11020  abscabs 14955  MetOpencmopn 20597  NrmCVeccnv 28954  BaseSetcba 28956  normCVcnmcv 28960  IndMetcims 28961   normOpOLD cnmoo 29111   BLnOp cblo 29112  CBanccbn 29232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-inf2 9386  ax-dc 10212  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959  ax-addf 10960  ax-mulf 10961
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-of 7523  df-om 7703  df-1st 7820  df-2nd 7821  df-supp 7965  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-2o 8285  df-er 8485  df-map 8604  df-pm 8605  df-ixp 8673  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-fsupp 9116  df-fi 9157  df-sup 9188  df-inf 9189  df-oi 9256  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-uz 12593  df-q 12699  df-rp 12741  df-xneg 12858  df-xadd 12859  df-xmul 12860  df-ioo 13093  df-ico 13095  df-icc 13096  df-fz 13250  df-fzo 13393  df-seq 13732  df-exp 13793  df-hash 14055  df-cj 14820  df-re 14821  df-im 14822  df-sqrt 14956  df-abs 14957  df-struct 16858  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-ress 16952  df-plusg 16985  df-mulr 16986  df-starv 16987  df-sca 16988  df-vsca 16989  df-ip 16990  df-tset 16991  df-ple 16992  df-ds 16994  df-unif 16995  df-hom 16996  df-cco 16997  df-rest 17143  df-topn 17144  df-0g 17162  df-gsum 17163  df-topgen 17164  df-pt 17165  df-prds 17168  df-xrs 17223  df-qtop 17228  df-imas 17229  df-xps 17231  df-mre 17305  df-mrc 17306  df-acs 17308  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-submnd 18441  df-mulg 18711  df-cntz 18933  df-cmn 19398  df-psmet 20599  df-xmet 20600  df-met 20601  df-bl 20602  df-mopn 20603  df-fbas 20604  df-fg 20605  df-cnfld 20608  df-top 22053  df-topon 22070  df-topsp 22092  df-bases 22106  df-cld 22180  df-ntr 22181  df-cls 22182  df-nei 22259  df-cn 22388  df-cnp 22389  df-lm 22390  df-haus 22476  df-cmp 22548  df-tx 22723  df-hmeo 22916  df-fil 23007  df-fm 23099  df-flim 23100  df-flf 23101  df-fcls 23102  df-xms 23483  df-ms 23484  df-tms 23485  df-cncf 24051  df-cfil 24429  df-cau 24430  df-cmet 24431  df-grpo 28863  df-gid 28864  df-ginv 28865  df-gdiv 28866  df-ablo 28915  df-vc 28929  df-nv 28962  df-va 28965  df-ba 28966  df-sm 28967  df-0v 28968  df-vs 28969  df-nmcv 28970  df-ims 28971  df-lno 29114  df-nmoo 29115  df-blo 29116  df-0o 29117  df-cbn 29233
This theorem is referenced by:  htthlem  29287
  Copyright terms: Public domain W3C validator