MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem7 Structured version   Visualization version   GIF version

Theorem divalglem7 16433
Description: Lemma for divalg 16437. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem7.1 𝐷 ∈ ℤ
divalglem7.2 𝐷 ≠ 0
Assertion
Ref Expression
divalglem7 ((𝑋 ∈ (0...((abs‘𝐷) − 1)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))

Proof of Theorem divalglem7
StepHypRef Expression
1 oveq1 7438 . . . . 5 (𝑋 = if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) → (𝑋 + (𝐾 · (abs‘𝐷))) = (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))))
21eleq1d 2824 . . . 4 (𝑋 = if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) → ((𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)) ↔ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
32notbid 318 . . 3 (𝑋 = if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) → (¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)) ↔ ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
43imbi2d 340 . 2 (𝑋 = if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) → ((𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))) ↔ (𝐾 ≠ 0 → ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))))
5 neeq1 3001 . . 3 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝐾 ≠ 0 ↔ if(𝐾 ∈ ℤ, 𝐾, 0) ≠ 0))
6 oveq1 7438 . . . . . 6 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝐾 · (abs‘𝐷)) = (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷)))
76oveq2d 7447 . . . . 5 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) = (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷))))
87eleq1d 2824 . . . 4 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)) ↔ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
98notbid 318 . . 3 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)) ↔ ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
105, 9imbi12d 344 . 2 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝐾 ≠ 0 → ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))) ↔ (if(𝐾 ∈ ℤ, 𝐾, 0) ≠ 0 → ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))))
11 divalglem7.1 . . . 4 𝐷 ∈ ℤ
12 divalglem7.2 . . . 4 𝐷 ≠ 0
13 nnabscl 15361 . . . 4 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
1411, 12, 13mp2an 692 . . 3 (abs‘𝐷) ∈ ℕ
15 0z 12622 . . . . 5 0 ∈ ℤ
16 0le0 12365 . . . . 5 0 ≤ 0
1714nngt0i 12303 . . . . 5 0 < (abs‘𝐷)
1814nnzi 12639 . . . . . 6 (abs‘𝐷) ∈ ℤ
19 elfzm11 13632 . . . . . 6 ((0 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (0 ∈ (0...((abs‘𝐷) − 1)) ↔ (0 ∈ ℤ ∧ 0 ≤ 0 ∧ 0 < (abs‘𝐷))))
2015, 18, 19mp2an 692 . . . . 5 (0 ∈ (0...((abs‘𝐷) − 1)) ↔ (0 ∈ ℤ ∧ 0 ≤ 0 ∧ 0 < (abs‘𝐷)))
2115, 16, 17, 20mpbir3an 1340 . . . 4 0 ∈ (0...((abs‘𝐷) − 1))
2221elimel 4600 . . 3 if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) ∈ (0...((abs‘𝐷) − 1))
2315elimel 4600 . . 3 if(𝐾 ∈ ℤ, 𝐾, 0) ∈ ℤ
2414, 22, 23divalglem6 16432 . 2 (if(𝐾 ∈ ℤ, 𝐾, 0) ≠ 0 → ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))
254, 10, 24dedth2h 4590 1 ((𝑋 ∈ (0...((abs‘𝐷) − 1)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  ifcif 4531   class class class wbr 5148  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490  cn 12264  cz 12611  ...cfz 13544  abscabs 15270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272
This theorem is referenced by:  divalglem8  16434
  Copyright terms: Public domain W3C validator