Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem7 Structured version   Visualization version   GIF version

Theorem divalglem7 15743
 Description: Lemma for divalg 15747. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem7.1 𝐷 ∈ ℤ
divalglem7.2 𝐷 ≠ 0
Assertion
Ref Expression
divalglem7 ((𝑋 ∈ (0...((abs‘𝐷) − 1)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))

Proof of Theorem divalglem7
StepHypRef Expression
1 oveq1 7146 . . . . 5 (𝑋 = if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) → (𝑋 + (𝐾 · (abs‘𝐷))) = (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))))
21eleq1d 2877 . . . 4 (𝑋 = if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) → ((𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)) ↔ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
32notbid 321 . . 3 (𝑋 = if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) → (¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)) ↔ ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
43imbi2d 344 . 2 (𝑋 = if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) → ((𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))) ↔ (𝐾 ≠ 0 → ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))))
5 neeq1 3052 . . 3 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝐾 ≠ 0 ↔ if(𝐾 ∈ ℤ, 𝐾, 0) ≠ 0))
6 oveq1 7146 . . . . . 6 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝐾 · (abs‘𝐷)) = (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷)))
76oveq2d 7155 . . . . 5 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) = (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷))))
87eleq1d 2877 . . . 4 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)) ↔ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
98notbid 321 . . 3 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)) ↔ ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
105, 9imbi12d 348 . 2 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝐾 ≠ 0 → ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))) ↔ (if(𝐾 ∈ ℤ, 𝐾, 0) ≠ 0 → ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))))
11 divalglem7.1 . . . 4 𝐷 ∈ ℤ
12 divalglem7.2 . . . 4 𝐷 ≠ 0
13 nnabscl 14680 . . . 4 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
1411, 12, 13mp2an 691 . . 3 (abs‘𝐷) ∈ ℕ
15 0z 11984 . . . . 5 0 ∈ ℤ
16 0le0 11730 . . . . 5 0 ≤ 0
1714nngt0i 11668 . . . . 5 0 < (abs‘𝐷)
1814nnzi 11998 . . . . . 6 (abs‘𝐷) ∈ ℤ
19 elfzm11 12977 . . . . . 6 ((0 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (0 ∈ (0...((abs‘𝐷) − 1)) ↔ (0 ∈ ℤ ∧ 0 ≤ 0 ∧ 0 < (abs‘𝐷))))
2015, 18, 19mp2an 691 . . . . 5 (0 ∈ (0...((abs‘𝐷) − 1)) ↔ (0 ∈ ℤ ∧ 0 ≤ 0 ∧ 0 < (abs‘𝐷)))
2115, 16, 17, 20mpbir3an 1338 . . . 4 0 ∈ (0...((abs‘𝐷) − 1))
2221elimel 4495 . . 3 if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) ∈ (0...((abs‘𝐷) − 1))
2315elimel 4495 . . 3 if(𝐾 ∈ ℤ, 𝐾, 0) ∈ ℤ
2414, 22, 23divalglem6 15742 . 2 (if(𝐾 ∈ ℤ, 𝐾, 0) ≠ 0 → ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))
254, 10, 24dedth2h 4485 1 ((𝑋 ∈ (0...((abs‘𝐷) − 1)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  ifcif 4428   class class class wbr 5033  ‘cfv 6328  (class class class)co 7139  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668   ≤ cle 10669   − cmin 10863  ℕcn 11629  ℤcz 11973  ...cfz 12889  abscabs 14588 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590 This theorem is referenced by:  divalglem8  15744
 Copyright terms: Public domain W3C validator