Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divalglem7 | Structured version Visualization version GIF version |
Description: Lemma for divalg 16112. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
divalglem7.1 | ⊢ 𝐷 ∈ ℤ |
divalglem7.2 | ⊢ 𝐷 ≠ 0 |
Ref | Expression |
---|---|
divalglem7 | ⊢ ((𝑋 ∈ (0...((abs‘𝐷) − 1)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7282 | . . . . 5 ⊢ (𝑋 = if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) → (𝑋 + (𝐾 · (abs‘𝐷))) = (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷)))) | |
2 | 1 | eleq1d 2823 | . . . 4 ⊢ (𝑋 = if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) → ((𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)) ↔ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))) |
3 | 2 | notbid 318 | . . 3 ⊢ (𝑋 = if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) → (¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)) ↔ ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))) |
4 | 3 | imbi2d 341 | . 2 ⊢ (𝑋 = if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) → ((𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))) ↔ (𝐾 ≠ 0 → ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))) |
5 | neeq1 3006 | . . 3 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝐾 ≠ 0 ↔ if(𝐾 ∈ ℤ, 𝐾, 0) ≠ 0)) | |
6 | oveq1 7282 | . . . . . 6 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝐾 · (abs‘𝐷)) = (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷))) | |
7 | 6 | oveq2d 7291 | . . . . 5 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) = (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷)))) |
8 | 7 | eleq1d 2823 | . . . 4 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)) ↔ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))) |
9 | 8 | notbid 318 | . . 3 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)) ↔ ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))) |
10 | 5, 9 | imbi12d 345 | . 2 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝐾 ≠ 0 → ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))) ↔ (if(𝐾 ∈ ℤ, 𝐾, 0) ≠ 0 → ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))) |
11 | divalglem7.1 | . . . 4 ⊢ 𝐷 ∈ ℤ | |
12 | divalglem7.2 | . . . 4 ⊢ 𝐷 ≠ 0 | |
13 | nnabscl 15037 | . . . 4 ⊢ ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ) | |
14 | 11, 12, 13 | mp2an 689 | . . 3 ⊢ (abs‘𝐷) ∈ ℕ |
15 | 0z 12330 | . . . . 5 ⊢ 0 ∈ ℤ | |
16 | 0le0 12074 | . . . . 5 ⊢ 0 ≤ 0 | |
17 | 14 | nngt0i 12012 | . . . . 5 ⊢ 0 < (abs‘𝐷) |
18 | 14 | nnzi 12344 | . . . . . 6 ⊢ (abs‘𝐷) ∈ ℤ |
19 | elfzm11 13327 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (0 ∈ (0...((abs‘𝐷) − 1)) ↔ (0 ∈ ℤ ∧ 0 ≤ 0 ∧ 0 < (abs‘𝐷)))) | |
20 | 15, 18, 19 | mp2an 689 | . . . . 5 ⊢ (0 ∈ (0...((abs‘𝐷) − 1)) ↔ (0 ∈ ℤ ∧ 0 ≤ 0 ∧ 0 < (abs‘𝐷))) |
21 | 15, 16, 17, 20 | mpbir3an 1340 | . . . 4 ⊢ 0 ∈ (0...((abs‘𝐷) − 1)) |
22 | 21 | elimel 4528 | . . 3 ⊢ if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) ∈ (0...((abs‘𝐷) − 1)) |
23 | 15 | elimel 4528 | . . 3 ⊢ if(𝐾 ∈ ℤ, 𝐾, 0) ∈ ℤ |
24 | 14, 22, 23 | divalglem6 16107 | . 2 ⊢ (if(𝐾 ∈ ℤ, 𝐾, 0) ≠ 0 → ¬ (if(𝑋 ∈ (0...((abs‘𝐷) − 1)), 𝑋, 0) + (if(𝐾 ∈ ℤ, 𝐾, 0) · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))) |
25 | 4, 10, 24 | dedth2h 4518 | 1 ⊢ ((𝑋 ∈ (0...((abs‘𝐷) − 1)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ifcif 4459 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 < clt 11009 ≤ cle 11010 − cmin 11205 ℕcn 11973 ℤcz 12319 ...cfz 13239 abscabs 14945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 |
This theorem is referenced by: divalglem8 16109 |
Copyright terms: Public domain | W3C validator |