MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmlno0 Structured version   Visualization version   GIF version

Theorem nmlno0 30625
Description: The norm of a linear operator is zero iff the operator is zero. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmlno0.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmlno0.0 𝑍 = (𝑈 0op 𝑊)
nmlno0.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
nmlno0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍))

Proof of Theorem nmlno0
StepHypRef Expression
1 nmlno0.7 . . . . . 6 𝐿 = (𝑈 LnOp 𝑊)
2 oveq1 7433 . . . . . 6 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 LnOp 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊))
31, 2eqtrid 2780 . . . . 5 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝐿 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊))
43eleq2d 2815 . . . 4 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇𝐿𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊)))
5 nmlno0.3 . . . . . . . 8 𝑁 = (𝑈 normOpOLD 𝑊)
6 oveq1 7433 . . . . . . . 8 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 normOpOLD 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊))
75, 6eqtrid 2780 . . . . . . 7 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑁 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊))
87fveq1d 6904 . . . . . 6 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑁𝑇) = ((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇))
98eqeq1d 2730 . . . . 5 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑁𝑇) = 0 ↔ ((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0))
10 nmlno0.0 . . . . . . 7 𝑍 = (𝑈 0op 𝑊)
11 oveq1 7433 . . . . . . 7 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 0op 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊))
1210, 11eqtrid 2780 . . . . . 6 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑍 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊))
1312eqeq2d 2739 . . . . 5 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 = 𝑍𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊)))
149, 13bibi12d 344 . . . 4 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍) ↔ (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊))))
154, 14imbi12d 343 . . 3 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇𝐿 → ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍)) ↔ (𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊) → (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊)))))
16 oveq2 7434 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
1716eleq2d 2815 . . . 4 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊) ↔ 𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))))
18 oveq2 7434 . . . . . . 7 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
1918fveq1d 6904 . . . . . 6 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = ((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑇))
2019eqeq1d 2730 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0 ↔ ((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑇) = 0))
21 oveq2 7434 . . . . . 6 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
2221eqeq2d 2739 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊) ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))))
2320, 22bibi12d 344 . . . 4 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊)) ↔ (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))))
2417, 23imbi12d 343 . . 3 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊) → (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊))) ↔ (𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))))))
25 eqid 2728 . . . 4 (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))
26 eqid 2728 . . . 4 (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))
27 eqid 2728 . . . 4 (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))
28 elimnvu 30514 . . . 4 if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ NrmCVec
29 elimnvu 30514 . . . 4 if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) ∈ NrmCVec
3025, 26, 27, 28, 29nmlno0i 30624 . . 3 (𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))))
3115, 24, 30dedth2h 4591 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿 → ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍)))
32313impia 1114 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wcel 2098  ifcif 4532  cop 4638  cfv 6553  (class class class)co 7426  0cc0 11146   + caddc 11149   · cmul 11151  abscabs 15221  NrmCVeccnv 30414   LnOp clno 30570   normOpOLD cnmoo 30571   0op c0o 30573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225  ax-mulf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-sup 9473  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-grpo 30323  df-gid 30324  df-ginv 30325  df-ablo 30375  df-vc 30389  df-nv 30422  df-va 30425  df-ba 30426  df-sm 30427  df-0v 30428  df-nmcv 30430  df-lno 30574  df-nmoo 30575  df-0o 30577
This theorem is referenced by:  nmlnogt0  30627
  Copyright terms: Public domain W3C validator