![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluzsubOLD | Structured version Visualization version GIF version |
Description: Obsolete version of eluzsub 12880 as of 7-Feb-2025. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eluzsubOLD | ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 7438 | . . . . 5 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ≥‘(𝑀 + 𝐾)) = (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾))) | |
2 | 1 | eleq2d 2811 | . . . 4 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) ↔ 𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)))) |
3 | fveq2 6891 | . . . . 5 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ≥‘𝑀) = (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))) | |
4 | 3 | eleq2d 2811 | . . . 4 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 − 𝐾) ∈ (ℤ≥‘𝑀) ↔ (𝑁 − 𝐾) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)))) |
5 | 2, 4 | imbi12d 343 | . . 3 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))))) |
6 | oveq2 7423 | . . . . . 6 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾) = (if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))) | |
7 | 6 | fveq2d 6895 | . . . . 5 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) = (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0)))) |
8 | 7 | eleq2d 2811 | . . . 4 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) ↔ 𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))))) |
9 | oveq2 7423 | . . . . 5 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝑁 − 𝐾) = (𝑁 − if(𝐾 ∈ ℤ, 𝐾, 0))) | |
10 | 9 | eleq1d 2810 | . . . 4 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑁 − 𝐾) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)) ↔ (𝑁 − if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)))) |
11 | 8, 10 | imbi12d 343 | . . 3 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))) ↔ (𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))) → (𝑁 − if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))))) |
12 | 0z 12597 | . . . . 5 ⊢ 0 ∈ ℤ | |
13 | 12 | elimel 4593 | . . . 4 ⊢ if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ |
14 | 12 | elimel 4593 | . . . 4 ⊢ if(𝐾 ∈ ℤ, 𝐾, 0) ∈ ℤ |
15 | 13, 14 | eluzsubi 12883 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))) → (𝑁 − if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))) |
16 | 5, 11, 15 | dedth2h 4583 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀))) |
17 | 16 | 3impia 1114 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ifcif 4524 ‘cfv 6542 (class class class)co 7415 0cc0 11136 + caddc 11139 − cmin 11472 ℤcz 12586 ℤ≥cuz 12850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-n0 12501 df-z 12587 df-uz 12851 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |