|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > eluzsubOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of eluzsub 12908 as of 7-Feb-2025. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| eluzsubOLD | ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fvoveq1 7454 | . . . . 5 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ≥‘(𝑀 + 𝐾)) = (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾))) | |
| 2 | 1 | eleq2d 2827 | . . . 4 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) ↔ 𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)))) | 
| 3 | fveq2 6906 | . . . . 5 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ≥‘𝑀) = (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))) | |
| 4 | 3 | eleq2d 2827 | . . . 4 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 − 𝐾) ∈ (ℤ≥‘𝑀) ↔ (𝑁 − 𝐾) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)))) | 
| 5 | 2, 4 | imbi12d 344 | . . 3 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))))) | 
| 6 | oveq2 7439 | . . . . . 6 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾) = (if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))) | |
| 7 | 6 | fveq2d 6910 | . . . . 5 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) = (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0)))) | 
| 8 | 7 | eleq2d 2827 | . . . 4 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) ↔ 𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))))) | 
| 9 | oveq2 7439 | . . . . 5 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝑁 − 𝐾) = (𝑁 − if(𝐾 ∈ ℤ, 𝐾, 0))) | |
| 10 | 9 | eleq1d 2826 | . . . 4 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑁 − 𝐾) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)) ↔ (𝑁 − if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)))) | 
| 11 | 8, 10 | imbi12d 344 | . . 3 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))) ↔ (𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))) → (𝑁 − if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))))) | 
| 12 | 0z 12624 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 13 | 12 | elimel 4595 | . . . 4 ⊢ if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ | 
| 14 | 12 | elimel 4595 | . . . 4 ⊢ if(𝐾 ∈ ℤ, 𝐾, 0) ∈ ℤ | 
| 15 | 13, 14 | eluzsubi 12911 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))) → (𝑁 − if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))) | 
| 16 | 5, 11, 15 | dedth2h 4585 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀))) | 
| 17 | 16 | 3impia 1118 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ifcif 4525 ‘cfv 6561 (class class class)co 7431 0cc0 11155 + caddc 11158 − cmin 11492 ℤcz 12613 ℤ≥cuz 12878 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |