HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chincl Structured version   Visualization version   GIF version

Theorem chincl 31007
Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chincl ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )

Proof of Theorem chincl
StepHypRef Expression
1 ineq1 4205 . . 3 (𝐴 = if(𝐴C , 𝐴, ℋ) → (𝐴𝐵) = (if(𝐴C , 𝐴, ℋ) ∩ 𝐵))
21eleq1d 2818 . 2 (𝐴 = if(𝐴C , 𝐴, ℋ) → ((𝐴𝐵) ∈ C ↔ (if(𝐴C , 𝐴, ℋ) ∩ 𝐵) ∈ C ))
3 ineq2 4206 . . 3 (𝐵 = if(𝐵C , 𝐵, ℋ) → (if(𝐴C , 𝐴, ℋ) ∩ 𝐵) = (if(𝐴C , 𝐴, ℋ) ∩ if(𝐵C , 𝐵, ℋ)))
43eleq1d 2818 . 2 (𝐵 = if(𝐵C , 𝐵, ℋ) → ((if(𝐴C , 𝐴, ℋ) ∩ 𝐵) ∈ C ↔ (if(𝐴C , 𝐴, ℋ) ∩ if(𝐵C , 𝐵, ℋ)) ∈ C ))
5 ifchhv 30752 . . 3 if(𝐴C , 𝐴, ℋ) ∈ C
6 ifchhv 30752 . . 3 if(𝐵C , 𝐵, ℋ) ∈ C
75, 6chincli 30968 . 2 (if(𝐴C , 𝐴, ℋ) ∩ if(𝐵C , 𝐵, ℋ)) ∈ C
82, 4, 7dedth2h 4587 1 ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cin 3947  ifcif 4528  chba 30427   C cch 30437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-1cn 11170  ax-addcl 11172  ax-hilex 30507  ax-hfvadd 30508  ax-hv0cl 30511  ax-hfvmul 30513
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-map 8824  df-nn 12217  df-hlim 30480  df-sh 30715  df-ch 30729
This theorem is referenced by:  chabs1  31024  chdmj1  31037  fh1  31126  fh2  31127  cm2j  31128  mdbr2  31804  mdbr3  31805  mdbr4  31806  dmdmd  31808  dmdbr2  31811  dmdbr5  31816  mddmd2  31817  mdsl0  31818  mdsl3  31824  mdsl2i  31830  mdslmd1i  31837  cvp  31883  atomli  31890  atordi  31892  atcvat3i  31904  atcvat4i  31905  mdsymlem1  31911  mdsymlem3  31913  mdsymlem5  31915  mdsymlem6  31916  sumdmdii  31923  dmdbr5ati  31930
  Copyright terms: Public domain W3C validator