![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chincl | Structured version Visualization version GIF version |
Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chincl | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∩ 𝐵) ∈ Cℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4036 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → (𝐴 ∩ 𝐵) = (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵)) | |
2 | 1 | eleq1d 2891 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → ((𝐴 ∩ 𝐵) ∈ Cℋ ↔ (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Cℋ )) |
3 | ineq2 4037 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ Cℋ , 𝐵, ℋ) → (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵) = (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, ℋ))) | |
4 | 3 | eleq1d 2891 | . 2 ⊢ (𝐵 = if(𝐵 ∈ Cℋ , 𝐵, ℋ) → ((if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Cℋ ↔ (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, ℋ)) ∈ Cℋ )) |
5 | ifchhv 28652 | . . 3 ⊢ if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ | |
6 | ifchhv 28652 | . . 3 ⊢ if(𝐵 ∈ Cℋ , 𝐵, ℋ) ∈ Cℋ | |
7 | 5, 6 | chincli 28870 | . 2 ⊢ (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, ℋ)) ∈ Cℋ |
8 | 2, 4, 7 | dedth2h 4365 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∩ 𝐵) ∈ Cℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∩ cin 3797 ifcif 4308 ℋchba 28327 Cℋ cch 28337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-1cn 10317 ax-addcl 10319 ax-hilex 28407 ax-hfvadd 28408 ax-hv0cl 28411 ax-hfvmul 28413 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-map 8129 df-nn 11358 df-hlim 28380 df-sh 28615 df-ch 28629 |
This theorem is referenced by: chabs1 28926 chdmj1 28939 fh1 29028 fh2 29029 cm2j 29030 mdbr2 29706 mdbr3 29707 mdbr4 29708 dmdmd 29710 dmdbr2 29713 dmdbr5 29718 mddmd2 29719 mdsl0 29720 mdsl3 29726 mdsl2i 29732 mdslmd1i 29739 cvp 29785 atomli 29792 atordi 29794 atcvat3i 29806 atcvat4i 29807 mdsymlem1 29813 mdsymlem3 29815 mdsymlem5 29817 mdsymlem6 29818 sumdmdii 29825 dmdbr5ati 29832 |
Copyright terms: Public domain | W3C validator |