| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chincl | Structured version Visualization version GIF version | ||
| Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chincl | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∩ 𝐵) ∈ Cℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4193 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → (𝐴 ∩ 𝐵) = (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵)) | |
| 2 | 1 | eleq1d 2820 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → ((𝐴 ∩ 𝐵) ∈ Cℋ ↔ (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Cℋ )) |
| 3 | ineq2 4194 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ Cℋ , 𝐵, ℋ) → (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵) = (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, ℋ))) | |
| 4 | 3 | eleq1d 2820 | . 2 ⊢ (𝐵 = if(𝐵 ∈ Cℋ , 𝐵, ℋ) → ((if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Cℋ ↔ (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, ℋ)) ∈ Cℋ )) |
| 5 | ifchhv 31230 | . . 3 ⊢ if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ | |
| 6 | ifchhv 31230 | . . 3 ⊢ if(𝐵 ∈ Cℋ , 𝐵, ℋ) ∈ Cℋ | |
| 7 | 5, 6 | chincli 31446 | . 2 ⊢ (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, ℋ)) ∈ Cℋ |
| 8 | 2, 4, 7 | dedth2h 4565 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∩ 𝐵) ∈ Cℋ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3930 ifcif 4505 ℋchba 30905 Cℋ cch 30915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-addcl 11194 ax-hilex 30985 ax-hfvadd 30986 ax-hv0cl 30989 ax-hfvmul 30991 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-map 8847 df-nn 12246 df-hlim 30958 df-sh 31193 df-ch 31207 |
| This theorem is referenced by: chabs1 31502 chdmj1 31515 fh1 31604 fh2 31605 cm2j 31606 mdbr2 32282 mdbr3 32283 mdbr4 32284 dmdmd 32286 dmdbr2 32289 dmdbr5 32294 mddmd2 32295 mdsl0 32296 mdsl3 32302 mdsl2i 32308 mdslmd1i 32315 cvp 32361 atomli 32368 atordi 32370 atcvat3i 32382 atcvat4i 32383 mdsymlem1 32389 mdsymlem3 32391 mdsymlem5 32393 mdsymlem6 32394 sumdmdii 32401 dmdbr5ati 32408 |
| Copyright terms: Public domain | W3C validator |