Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chincl | Structured version Visualization version GIF version |
Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chincl | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∩ 𝐵) ∈ Cℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4139 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → (𝐴 ∩ 𝐵) = (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵)) | |
2 | 1 | eleq1d 2823 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → ((𝐴 ∩ 𝐵) ∈ Cℋ ↔ (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Cℋ )) |
3 | ineq2 4140 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ Cℋ , 𝐵, ℋ) → (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵) = (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, ℋ))) | |
4 | 3 | eleq1d 2823 | . 2 ⊢ (𝐵 = if(𝐵 ∈ Cℋ , 𝐵, ℋ) → ((if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Cℋ ↔ (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, ℋ)) ∈ Cℋ )) |
5 | ifchhv 29614 | . . 3 ⊢ if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ | |
6 | ifchhv 29614 | . . 3 ⊢ if(𝐵 ∈ Cℋ , 𝐵, ℋ) ∈ Cℋ | |
7 | 5, 6 | chincli 29830 | . 2 ⊢ (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, ℋ)) ∈ Cℋ |
8 | 2, 4, 7 | dedth2h 4518 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∩ 𝐵) ∈ Cℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3885 ifcif 4459 ℋchba 29289 Cℋ cch 29299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-1cn 10939 ax-addcl 10941 ax-hilex 29369 ax-hfvadd 29370 ax-hv0cl 29373 ax-hfvmul 29375 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-map 8604 df-nn 11984 df-hlim 29342 df-sh 29577 df-ch 29591 |
This theorem is referenced by: chabs1 29886 chdmj1 29899 fh1 29988 fh2 29989 cm2j 29990 mdbr2 30666 mdbr3 30667 mdbr4 30668 dmdmd 30670 dmdbr2 30673 dmdbr5 30678 mddmd2 30679 mdsl0 30680 mdsl3 30686 mdsl2i 30692 mdslmd1i 30699 cvp 30745 atomli 30752 atordi 30754 atcvat3i 30766 atcvat4i 30767 mdsymlem1 30773 mdsymlem3 30775 mdsymlem5 30777 mdsymlem6 30778 sumdmdii 30785 dmdbr5ati 30792 |
Copyright terms: Public domain | W3C validator |