| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chincl | Structured version Visualization version GIF version | ||
| Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chincl | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∩ 𝐵) ∈ Cℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4172 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → (𝐴 ∩ 𝐵) = (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵)) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → ((𝐴 ∩ 𝐵) ∈ Cℋ ↔ (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Cℋ )) |
| 3 | ineq2 4173 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ Cℋ , 𝐵, ℋ) → (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵) = (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, ℋ))) | |
| 4 | 3 | eleq1d 2813 | . 2 ⊢ (𝐵 = if(𝐵 ∈ Cℋ , 𝐵, ℋ) → ((if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Cℋ ↔ (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, ℋ)) ∈ Cℋ )) |
| 5 | ifchhv 31224 | . . 3 ⊢ if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ | |
| 6 | ifchhv 31224 | . . 3 ⊢ if(𝐵 ∈ Cℋ , 𝐵, ℋ) ∈ Cℋ | |
| 7 | 5, 6 | chincli 31440 | . 2 ⊢ (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, ℋ)) ∈ Cℋ |
| 8 | 2, 4, 7 | dedth2h 4544 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∩ 𝐵) ∈ Cℋ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ifcif 4484 ℋchba 30899 Cℋ cch 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-1cn 11104 ax-addcl 11106 ax-hilex 30979 ax-hfvadd 30980 ax-hv0cl 30983 ax-hfvmul 30985 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-map 8778 df-nn 12165 df-hlim 30952 df-sh 31187 df-ch 31201 |
| This theorem is referenced by: chabs1 31496 chdmj1 31509 fh1 31598 fh2 31599 cm2j 31600 mdbr2 32276 mdbr3 32277 mdbr4 32278 dmdmd 32280 dmdbr2 32283 dmdbr5 32288 mddmd2 32289 mdsl0 32290 mdsl3 32296 mdsl2i 32302 mdslmd1i 32309 cvp 32355 atomli 32362 atordi 32364 atcvat3i 32376 atcvat4i 32377 mdsymlem1 32383 mdsymlem3 32385 mdsymlem5 32387 mdsymlem6 32388 sumdmdii 32395 dmdbr5ati 32402 |
| Copyright terms: Public domain | W3C validator |