HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chincl Structured version   Visualization version   GIF version

Theorem chincl 29869
Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chincl ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )

Proof of Theorem chincl
StepHypRef Expression
1 ineq1 4139 . . 3 (𝐴 = if(𝐴C , 𝐴, ℋ) → (𝐴𝐵) = (if(𝐴C , 𝐴, ℋ) ∩ 𝐵))
21eleq1d 2823 . 2 (𝐴 = if(𝐴C , 𝐴, ℋ) → ((𝐴𝐵) ∈ C ↔ (if(𝐴C , 𝐴, ℋ) ∩ 𝐵) ∈ C ))
3 ineq2 4140 . . 3 (𝐵 = if(𝐵C , 𝐵, ℋ) → (if(𝐴C , 𝐴, ℋ) ∩ 𝐵) = (if(𝐴C , 𝐴, ℋ) ∩ if(𝐵C , 𝐵, ℋ)))
43eleq1d 2823 . 2 (𝐵 = if(𝐵C , 𝐵, ℋ) → ((if(𝐴C , 𝐴, ℋ) ∩ 𝐵) ∈ C ↔ (if(𝐴C , 𝐴, ℋ) ∩ if(𝐵C , 𝐵, ℋ)) ∈ C ))
5 ifchhv 29614 . . 3 if(𝐴C , 𝐴, ℋ) ∈ C
6 ifchhv 29614 . . 3 if(𝐵C , 𝐵, ℋ) ∈ C
75, 6chincli 29830 . 2 (if(𝐴C , 𝐴, ℋ) ∩ if(𝐵C , 𝐵, ℋ)) ∈ C
82, 4, 7dedth2h 4518 1 ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cin 3885  ifcif 4459  chba 29289   C cch 29299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-1cn 10939  ax-addcl 10941  ax-hilex 29369  ax-hfvadd 29370  ax-hv0cl 29373  ax-hfvmul 29375
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-map 8604  df-nn 11984  df-hlim 29342  df-sh 29577  df-ch 29591
This theorem is referenced by:  chabs1  29886  chdmj1  29899  fh1  29988  fh2  29989  cm2j  29990  mdbr2  30666  mdbr3  30667  mdbr4  30668  dmdmd  30670  dmdbr2  30673  dmdbr5  30678  mddmd2  30679  mdsl0  30680  mdsl3  30686  mdsl2i  30692  mdslmd1i  30699  cvp  30745  atomli  30752  atordi  30754  atcvat3i  30766  atcvat4i  30767  mdsymlem1  30773  mdsymlem3  30775  mdsymlem5  30777  mdsymlem6  30778  sumdmdii  30785  dmdbr5ati  30792
  Copyright terms: Public domain W3C validator