Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chincl | Structured version Visualization version GIF version |
Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chincl | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∩ 𝐵) ∈ Cℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4145 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → (𝐴 ∩ 𝐵) = (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵)) | |
2 | 1 | eleq1d 2821 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → ((𝐴 ∩ 𝐵) ∈ Cℋ ↔ (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Cℋ )) |
3 | ineq2 4146 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ Cℋ , 𝐵, ℋ) → (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵) = (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, ℋ))) | |
4 | 3 | eleq1d 2821 | . 2 ⊢ (𝐵 = if(𝐵 ∈ Cℋ , 𝐵, ℋ) → ((if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Cℋ ↔ (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, ℋ)) ∈ Cℋ )) |
5 | ifchhv 29651 | . . 3 ⊢ if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ | |
6 | ifchhv 29651 | . . 3 ⊢ if(𝐵 ∈ Cℋ , 𝐵, ℋ) ∈ Cℋ | |
7 | 5, 6 | chincli 29867 | . 2 ⊢ (if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, ℋ)) ∈ Cℋ |
8 | 2, 4, 7 | dedth2h 4524 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∩ 𝐵) ∈ Cℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∩ cin 3891 ifcif 4465 ℋchba 29326 Cℋ cch 29336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-1cn 10975 ax-addcl 10977 ax-hilex 29406 ax-hfvadd 29407 ax-hv0cl 29410 ax-hfvmul 29412 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-map 8648 df-nn 12020 df-hlim 29379 df-sh 29614 df-ch 29628 |
This theorem is referenced by: chabs1 29923 chdmj1 29936 fh1 30025 fh2 30026 cm2j 30027 mdbr2 30703 mdbr3 30704 mdbr4 30705 dmdmd 30707 dmdbr2 30710 dmdbr5 30715 mddmd2 30716 mdsl0 30717 mdsl3 30723 mdsl2i 30729 mdslmd1i 30736 cvp 30782 atomli 30789 atordi 30791 atcvat3i 30803 atcvat4i 30804 mdsymlem1 30810 mdsymlem3 30812 mdsymlem5 30814 mdsymlem6 30815 sumdmdii 30822 dmdbr5ati 30829 |
Copyright terms: Public domain | W3C validator |