HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chincl Structured version   Visualization version   GIF version

Theorem chincl 29906
Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chincl ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )

Proof of Theorem chincl
StepHypRef Expression
1 ineq1 4145 . . 3 (𝐴 = if(𝐴C , 𝐴, ℋ) → (𝐴𝐵) = (if(𝐴C , 𝐴, ℋ) ∩ 𝐵))
21eleq1d 2821 . 2 (𝐴 = if(𝐴C , 𝐴, ℋ) → ((𝐴𝐵) ∈ C ↔ (if(𝐴C , 𝐴, ℋ) ∩ 𝐵) ∈ C ))
3 ineq2 4146 . . 3 (𝐵 = if(𝐵C , 𝐵, ℋ) → (if(𝐴C , 𝐴, ℋ) ∩ 𝐵) = (if(𝐴C , 𝐴, ℋ) ∩ if(𝐵C , 𝐵, ℋ)))
43eleq1d 2821 . 2 (𝐵 = if(𝐵C , 𝐵, ℋ) → ((if(𝐴C , 𝐴, ℋ) ∩ 𝐵) ∈ C ↔ (if(𝐴C , 𝐴, ℋ) ∩ if(𝐵C , 𝐵, ℋ)) ∈ C ))
5 ifchhv 29651 . . 3 if(𝐴C , 𝐴, ℋ) ∈ C
6 ifchhv 29651 . . 3 if(𝐵C , 𝐵, ℋ) ∈ C
75, 6chincli 29867 . 2 (if(𝐴C , 𝐴, ℋ) ∩ if(𝐵C , 𝐵, ℋ)) ∈ C
82, 4, 7dedth2h 4524 1 ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  cin 3891  ifcif 4465  chba 29326   C cch 29336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-1cn 10975  ax-addcl 10977  ax-hilex 29406  ax-hfvadd 29407  ax-hv0cl 29410  ax-hfvmul 29412
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-map 8648  df-nn 12020  df-hlim 29379  df-sh 29614  df-ch 29628
This theorem is referenced by:  chabs1  29923  chdmj1  29936  fh1  30025  fh2  30026  cm2j  30027  mdbr2  30703  mdbr3  30704  mdbr4  30705  dmdmd  30707  dmdbr2  30710  dmdbr5  30715  mddmd2  30716  mdsl0  30717  mdsl3  30723  mdsl2i  30729  mdslmd1i  30736  cvp  30782  atomli  30789  atordi  30791  atcvat3i  30803  atcvat4i  30804  mdsymlem1  30810  mdsymlem3  30812  mdsymlem5  30814  mdsymlem6  30815  sumdmdii  30822  dmdbr5ati  30829
  Copyright terms: Public domain W3C validator