Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > pjoml | Structured version Visualization version GIF version |
Description: Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of [Kalmbach] p. 22. Derived using projections; compare omlsi 29299. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjoml | ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ)) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3919 | . . . . 5 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (𝐴 ⊆ 𝐵 ↔ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵)) | |
2 | fveq2 6663 | . . . . . . 7 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (⊥‘𝐴) = (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) | |
3 | 2 | ineq2d 4119 | . . . . . 6 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (𝐵 ∩ (⊥‘𝐴)) = (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ)))) |
4 | 3 | eqeq1d 2760 | . . . . 5 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → ((𝐵 ∩ (⊥‘𝐴)) = 0ℋ ↔ (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ)) |
5 | 1, 4 | anbi12d 633 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ) ↔ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ))) |
6 | eqeq1 2762 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (𝐴 = 𝐵 ↔ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = 𝐵)) | |
7 | 5, 6 | imbi12d 348 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ) → 𝐴 = 𝐵) ↔ ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ) → if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = 𝐵))) |
8 | sseq2 3920 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵 ↔ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ if(𝐵 ∈ Sℋ , 𝐵, 0ℋ))) | |
9 | ineq1 4111 | . . . . . 6 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = (if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ)))) | |
10 | 9 | eqeq1d 2760 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → ((𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ ↔ (if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ)) |
11 | 8, 10 | anbi12d 633 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ) ↔ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∧ (if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ))) |
12 | eqeq2 2770 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = 𝐵 ↔ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ))) | |
13 | 11, 12 | imbi12d 348 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → (((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ) → if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = 𝐵) ↔ ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∧ (if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ) → if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ)))) |
14 | h0elch 29150 | . . . . 5 ⊢ 0ℋ ∈ Cℋ | |
15 | 14 | elimel 4492 | . . . 4 ⊢ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∈ Cℋ |
16 | h0elsh 29151 | . . . . 5 ⊢ 0ℋ ∈ Sℋ | |
17 | 16 | elimel 4492 | . . . 4 ⊢ if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∈ Sℋ |
18 | 15, 17 | pjomli 29330 | . . 3 ⊢ ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∧ (if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ) → if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ)) |
19 | 7, 13, 18 | dedth2h 4482 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Sℋ ) → ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ) → 𝐴 = 𝐵)) |
20 | 19 | imp 410 | 1 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ)) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∩ cin 3859 ⊆ wss 3860 ifcif 4423 ‘cfv 6340 Sℋ csh 28823 Cℋ cch 28824 ⊥cort 28825 0ℋc0h 28830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cc 9908 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 ax-addf 10667 ax-mulf 10668 ax-hilex 28894 ax-hfvadd 28895 ax-hvcom 28896 ax-hvass 28897 ax-hv0cl 28898 ax-hvaddid 28899 ax-hfvmul 28900 ax-hvmulid 28901 ax-hvmulass 28902 ax-hvdistr1 28903 ax-hvdistr2 28904 ax-hvmul0 28905 ax-hfi 28974 ax-his1 28977 ax-his2 28978 ax-his3 28979 ax-his4 28980 ax-hcompl 29097 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-oadd 8122 df-omul 8123 df-er 8305 df-map 8424 df-pm 8425 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fi 8921 df-sup 8952 df-inf 8953 df-oi 9020 df-card 9414 df-acn 9417 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-n0 11948 df-z 12034 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-ico 12798 df-icc 12799 df-fz 12953 df-fl 13224 df-seq 13432 df-exp 13493 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-clim 14906 df-rlim 14907 df-rest 16767 df-topgen 16788 df-psmet 20171 df-xmet 20172 df-met 20173 df-bl 20174 df-mopn 20175 df-fbas 20176 df-fg 20177 df-top 21607 df-topon 21624 df-bases 21659 df-cld 21732 df-ntr 21733 df-cls 21734 df-nei 21811 df-lm 21942 df-haus 22028 df-fil 22559 df-fm 22651 df-flim 22652 df-flf 22653 df-cfil 23968 df-cau 23969 df-cmet 23970 df-grpo 28388 df-gid 28389 df-ginv 28390 df-gdiv 28391 df-ablo 28440 df-vc 28454 df-nv 28487 df-va 28490 df-ba 28491 df-sm 28492 df-0v 28493 df-vs 28494 df-nmcv 28495 df-ims 28496 df-ssp 28617 df-ph 28708 df-cbn 28758 df-hnorm 28863 df-hba 28864 df-hvsub 28866 df-hlim 28867 df-hcau 28868 df-sh 29102 df-ch 29116 df-oc 29147 df-ch0 29148 |
This theorem is referenced by: fh1 29513 fh2 29514 |
Copyright terms: Public domain | W3C validator |