| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjoml | Structured version Visualization version GIF version | ||
| Description: Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of [Kalmbach] p. 22. Derived using projections; compare omlsi 31405. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjoml | ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ)) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3956 | . . . . 5 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (𝐴 ⊆ 𝐵 ↔ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵)) | |
| 2 | fveq2 6831 | . . . . . . 7 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (⊥‘𝐴) = (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) | |
| 3 | 2 | ineq2d 4169 | . . . . . 6 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (𝐵 ∩ (⊥‘𝐴)) = (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ)))) |
| 4 | 3 | eqeq1d 2735 | . . . . 5 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → ((𝐵 ∩ (⊥‘𝐴)) = 0ℋ ↔ (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ)) |
| 5 | 1, 4 | anbi12d 632 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ) ↔ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ))) |
| 6 | eqeq1 2737 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (𝐴 = 𝐵 ↔ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = 𝐵)) | |
| 7 | 5, 6 | imbi12d 344 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ) → 𝐴 = 𝐵) ↔ ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ) → if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = 𝐵))) |
| 8 | sseq2 3957 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵 ↔ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ if(𝐵 ∈ Sℋ , 𝐵, 0ℋ))) | |
| 9 | ineq1 4162 | . . . . . 6 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = (if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ)))) | |
| 10 | 9 | eqeq1d 2735 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → ((𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ ↔ (if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ)) |
| 11 | 8, 10 | anbi12d 632 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ) ↔ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∧ (if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ))) |
| 12 | eqeq2 2745 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = 𝐵 ↔ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ))) | |
| 13 | 11, 12 | imbi12d 344 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → (((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ) → if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = 𝐵) ↔ ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∧ (if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ) → if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ)))) |
| 14 | h0elch 31256 | . . . . 5 ⊢ 0ℋ ∈ Cℋ | |
| 15 | 14 | elimel 4546 | . . . 4 ⊢ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∈ Cℋ |
| 16 | h0elsh 31257 | . . . . 5 ⊢ 0ℋ ∈ Sℋ | |
| 17 | 16 | elimel 4546 | . . . 4 ⊢ if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∈ Sℋ |
| 18 | 15, 17 | pjomli 31436 | . . 3 ⊢ ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∧ (if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ) → if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ)) |
| 19 | 7, 13, 18 | dedth2h 4536 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Sℋ ) → ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ) → 𝐴 = 𝐵)) |
| 20 | 19 | imp 406 | 1 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ)) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 ifcif 4476 ‘cfv 6489 Sℋ csh 30929 Cℋ cch 30930 ⊥cort 30931 0ℋc0h 30936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cc 10337 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 ax-addf 11096 ax-mulf 11097 ax-hilex 31000 ax-hfvadd 31001 ax-hvcom 31002 ax-hvass 31003 ax-hv0cl 31004 ax-hvaddid 31005 ax-hfvmul 31006 ax-hvmulid 31007 ax-hvmulass 31008 ax-hvdistr1 31009 ax-hvdistr2 31010 ax-hvmul0 31011 ax-hfi 31080 ax-his1 31083 ax-his2 31084 ax-his3 31085 ax-his4 31086 ax-hcompl 31203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-omul 8399 df-er 8631 df-map 8761 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9306 df-sup 9337 df-inf 9338 df-oi 9407 df-card 9843 df-acn 9846 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-n0 12393 df-z 12480 df-uz 12743 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ico 13258 df-icc 13259 df-fz 13415 df-fl 13703 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 df-rlim 15403 df-rest 17333 df-topgen 17354 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-fbas 21297 df-fg 21298 df-top 22829 df-topon 22846 df-bases 22881 df-cld 22954 df-ntr 22955 df-cls 22956 df-nei 23033 df-lm 23164 df-haus 23250 df-fil 23781 df-fm 23873 df-flim 23874 df-flf 23875 df-cfil 25202 df-cau 25203 df-cmet 25204 df-grpo 30494 df-gid 30495 df-ginv 30496 df-gdiv 30497 df-ablo 30546 df-vc 30560 df-nv 30593 df-va 30596 df-ba 30597 df-sm 30598 df-0v 30599 df-vs 30600 df-nmcv 30601 df-ims 30602 df-ssp 30723 df-ph 30814 df-cbn 30864 df-hnorm 30969 df-hba 30970 df-hvsub 30972 df-hlim 30973 df-hcau 30974 df-sh 31208 df-ch 31222 df-oc 31253 df-ch0 31254 |
| This theorem is referenced by: fh1 31619 fh2 31620 |
| Copyright terms: Public domain | W3C validator |