HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shincl Structured version   Visualization version   GIF version

Theorem shincl 31129
Description: Closure of intersection of two subspaces. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
shincl ((𝐴S𝐵S ) → (𝐴𝐵) ∈ S )

Proof of Theorem shincl
StepHypRef Expression
1 ineq1 4198 . . 3 (𝐴 = if(𝐴S , 𝐴, ℋ) → (𝐴𝐵) = (if(𝐴S , 𝐴, ℋ) ∩ 𝐵))
21eleq1d 2810 . 2 (𝐴 = if(𝐴S , 𝐴, ℋ) → ((𝐴𝐵) ∈ S ↔ (if(𝐴S , 𝐴, ℋ) ∩ 𝐵) ∈ S ))
3 ineq2 4199 . . 3 (𝐵 = if(𝐵S , 𝐵, ℋ) → (if(𝐴S , 𝐴, ℋ) ∩ 𝐵) = (if(𝐴S , 𝐴, ℋ) ∩ if(𝐵S , 𝐵, ℋ)))
43eleq1d 2810 . 2 (𝐵 = if(𝐵S , 𝐵, ℋ) → ((if(𝐴S , 𝐴, ℋ) ∩ 𝐵) ∈ S ↔ (if(𝐴S , 𝐴, ℋ) ∩ if(𝐵S , 𝐵, ℋ)) ∈ S ))
5 helsh 30993 . . . 4 ℋ ∈ S
65elimel 4590 . . 3 if(𝐴S , 𝐴, ℋ) ∈ S
75elimel 4590 . . 3 if(𝐵S , 𝐵, ℋ) ∈ S
86, 7shincli 31110 . 2 (if(𝐴S , 𝐴, ℋ) ∩ if(𝐵S , 𝐵, ℋ)) ∈ S
92, 4, 8dedth2h 4580 1 ((𝐴S𝐵S ) → (𝐴𝐵) ∈ S )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cin 3940  ifcif 4521  chba 30667   S csh 30676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-1cn 11165  ax-addcl 11167  ax-hilex 30747  ax-hfvadd 30748  ax-hv0cl 30751  ax-hfvmul 30753
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-map 8819  df-nn 12212  df-hlim 30720  df-sh 30955  df-ch 30969
This theorem is referenced by:  orthin  31194  sumdmdii  32163
  Copyright terms: Public domain W3C validator