| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shincl | Structured version Visualization version GIF version | ||
| Description: Closure of intersection of two subspaces. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shincl | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4164 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Sℋ , 𝐴, ℋ) → (𝐴 ∩ 𝐵) = (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵)) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Sℋ , 𝐴, ℋ) → ((𝐴 ∩ 𝐵) ∈ Sℋ ↔ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Sℋ )) |
| 3 | ineq2 4165 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, ℋ) → (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵) = (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Sℋ , 𝐵, ℋ))) | |
| 4 | 3 | eleq1d 2813 | . 2 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, ℋ) → ((if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Sℋ ↔ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Sℋ , 𝐵, ℋ)) ∈ Sℋ )) |
| 5 | helsh 31189 | . . . 4 ⊢ ℋ ∈ Sℋ | |
| 6 | 5 | elimel 4546 | . . 3 ⊢ if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∈ Sℋ |
| 7 | 5 | elimel 4546 | . . 3 ⊢ if(𝐵 ∈ Sℋ , 𝐵, ℋ) ∈ Sℋ |
| 8 | 6, 7 | shincli 31306 | . 2 ⊢ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Sℋ , 𝐵, ℋ)) ∈ Sℋ |
| 9 | 2, 4, 8 | dedth2h 4536 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 ifcif 4476 ℋchba 30863 Sℋ csh 30872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-1cn 11067 ax-addcl 11069 ax-hilex 30943 ax-hfvadd 30944 ax-hv0cl 30947 ax-hfvmul 30949 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-map 8755 df-nn 12129 df-hlim 30916 df-sh 31151 df-ch 31165 |
| This theorem is referenced by: orthin 31390 sumdmdii 32359 |
| Copyright terms: Public domain | W3C validator |