Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shincl | Structured version Visualization version GIF version |
Description: Closure of intersection of two subspaces. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shincl | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4106 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Sℋ , 𝐴, ℋ) → (𝐴 ∩ 𝐵) = (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵)) | |
2 | 1 | eleq1d 2818 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Sℋ , 𝐴, ℋ) → ((𝐴 ∩ 𝐵) ∈ Sℋ ↔ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Sℋ )) |
3 | ineq2 4107 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, ℋ) → (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵) = (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Sℋ , 𝐵, ℋ))) | |
4 | 3 | eleq1d 2818 | . 2 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, ℋ) → ((if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Sℋ ↔ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Sℋ , 𝐵, ℋ)) ∈ Sℋ )) |
5 | helsh 29192 | . . . 4 ⊢ ℋ ∈ Sℋ | |
6 | 5 | elimel 4493 | . . 3 ⊢ if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∈ Sℋ |
7 | 5 | elimel 4493 | . . 3 ⊢ if(𝐵 ∈ Sℋ , 𝐵, ℋ) ∈ Sℋ |
8 | 6, 7 | shincli 29309 | . 2 ⊢ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Sℋ , 𝐵, ℋ)) ∈ Sℋ |
9 | 2, 4, 8 | dedth2h 4483 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∩ cin 3852 ifcif 4424 ℋchba 28866 Sℋ csh 28875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-1cn 10685 ax-addcl 10687 ax-hilex 28946 ax-hfvadd 28947 ax-hv0cl 28950 ax-hfvmul 28952 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-int 4847 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-ov 7185 df-oprab 7186 df-mpo 7187 df-om 7612 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-map 8451 df-nn 11729 df-hlim 28919 df-sh 29154 df-ch 29168 |
This theorem is referenced by: orthin 29393 sumdmdii 30362 |
Copyright terms: Public domain | W3C validator |