![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shincl | Structured version Visualization version GIF version |
Description: Closure of intersection of two subspaces. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shincl | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4170 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Sℋ , 𝐴, ℋ) → (𝐴 ∩ 𝐵) = (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵)) | |
2 | 1 | eleq1d 2823 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Sℋ , 𝐴, ℋ) → ((𝐴 ∩ 𝐵) ∈ Sℋ ↔ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Sℋ )) |
3 | ineq2 4171 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, ℋ) → (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵) = (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Sℋ , 𝐵, ℋ))) | |
4 | 3 | eleq1d 2823 | . 2 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, ℋ) → ((if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Sℋ ↔ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Sℋ , 𝐵, ℋ)) ∈ Sℋ )) |
5 | helsh 30229 | . . . 4 ⊢ ℋ ∈ Sℋ | |
6 | 5 | elimel 4560 | . . 3 ⊢ if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∈ Sℋ |
7 | 5 | elimel 4560 | . . 3 ⊢ if(𝐵 ∈ Sℋ , 𝐵, ℋ) ∈ Sℋ |
8 | 6, 7 | shincli 30346 | . 2 ⊢ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Sℋ , 𝐵, ℋ)) ∈ Sℋ |
9 | 2, 4, 8 | dedth2h 4550 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∩ cin 3914 ifcif 4491 ℋchba 29903 Sℋ csh 29912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-1cn 11116 ax-addcl 11118 ax-hilex 29983 ax-hfvadd 29984 ax-hv0cl 29987 ax-hfvmul 29989 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-map 8774 df-nn 12161 df-hlim 29956 df-sh 30191 df-ch 30205 |
This theorem is referenced by: orthin 30430 sumdmdii 31399 |
Copyright terms: Public domain | W3C validator |