Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shincl | Structured version Visualization version GIF version |
Description: Closure of intersection of two subspaces. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shincl | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4136 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Sℋ , 𝐴, ℋ) → (𝐴 ∩ 𝐵) = (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵)) | |
2 | 1 | eleq1d 2823 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Sℋ , 𝐴, ℋ) → ((𝐴 ∩ 𝐵) ∈ Sℋ ↔ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Sℋ )) |
3 | ineq2 4137 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, ℋ) → (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵) = (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Sℋ , 𝐵, ℋ))) | |
4 | 3 | eleq1d 2823 | . 2 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, ℋ) → ((if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Sℋ ↔ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Sℋ , 𝐵, ℋ)) ∈ Sℋ )) |
5 | helsh 29508 | . . . 4 ⊢ ℋ ∈ Sℋ | |
6 | 5 | elimel 4525 | . . 3 ⊢ if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∈ Sℋ |
7 | 5 | elimel 4525 | . . 3 ⊢ if(𝐵 ∈ Sℋ , 𝐵, ℋ) ∈ Sℋ |
8 | 6, 7 | shincli 29625 | . 2 ⊢ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Sℋ , 𝐵, ℋ)) ∈ Sℋ |
9 | 2, 4, 8 | dedth2h 4515 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ifcif 4456 ℋchba 29182 Sℋ csh 29191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 ax-hilex 29262 ax-hfvadd 29263 ax-hv0cl 29266 ax-hfvmul 29268 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-map 8575 df-nn 11904 df-hlim 29235 df-sh 29470 df-ch 29484 |
This theorem is referenced by: orthin 29709 sumdmdii 30678 |
Copyright terms: Public domain | W3C validator |