HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chlejb1 Structured version   Visualization version   GIF version

Theorem chlejb1 28698
Description: Hilbert lattice ordering in terms of join. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chlejb1 ((𝐴C𝐵C ) → (𝐴𝐵 ↔ (𝐴 𝐵) = 𝐵))

Proof of Theorem chlejb1
StepHypRef Expression
1 sseq1 3823 . . 3 (𝐴 = if(𝐴C , 𝐴, 0) → (𝐴𝐵 ↔ if(𝐴C , 𝐴, 0) ⊆ 𝐵))
2 oveq1 6877 . . . 4 (𝐴 = if(𝐴C , 𝐴, 0) → (𝐴 𝐵) = (if(𝐴C , 𝐴, 0) ∨ 𝐵))
32eqeq1d 2808 . . 3 (𝐴 = if(𝐴C , 𝐴, 0) → ((𝐴 𝐵) = 𝐵 ↔ (if(𝐴C , 𝐴, 0) ∨ 𝐵) = 𝐵))
41, 3bibi12d 336 . 2 (𝐴 = if(𝐴C , 𝐴, 0) → ((𝐴𝐵 ↔ (𝐴 𝐵) = 𝐵) ↔ (if(𝐴C , 𝐴, 0) ⊆ 𝐵 ↔ (if(𝐴C , 𝐴, 0) ∨ 𝐵) = 𝐵)))
5 sseq2 3824 . . 3 (𝐵 = if(𝐵C , 𝐵, 0) → (if(𝐴C , 𝐴, 0) ⊆ 𝐵 ↔ if(𝐴C , 𝐴, 0) ⊆ if(𝐵C , 𝐵, 0)))
6 oveq2 6878 . . . 4 (𝐵 = if(𝐵C , 𝐵, 0) → (if(𝐴C , 𝐴, 0) ∨ 𝐵) = (if(𝐴C , 𝐴, 0) ∨ if(𝐵C , 𝐵, 0)))
7 id 22 . . . 4 (𝐵 = if(𝐵C , 𝐵, 0) → 𝐵 = if(𝐵C , 𝐵, 0))
86, 7eqeq12d 2821 . . 3 (𝐵 = if(𝐵C , 𝐵, 0) → ((if(𝐴C , 𝐴, 0) ∨ 𝐵) = 𝐵 ↔ (if(𝐴C , 𝐴, 0) ∨ if(𝐵C , 𝐵, 0)) = if(𝐵C , 𝐵, 0)))
95, 8bibi12d 336 . 2 (𝐵 = if(𝐵C , 𝐵, 0) → ((if(𝐴C , 𝐴, 0) ⊆ 𝐵 ↔ (if(𝐴C , 𝐴, 0) ∨ 𝐵) = 𝐵) ↔ (if(𝐴C , 𝐴, 0) ⊆ if(𝐵C , 𝐵, 0) ↔ (if(𝐴C , 𝐴, 0) ∨ if(𝐵C , 𝐵, 0)) = if(𝐵C , 𝐵, 0))))
10 h0elch 28439 . . . 4 0C
1110elimel 4346 . . 3 if(𝐴C , 𝐴, 0) ∈ C
1210elimel 4346 . . 3 if(𝐵C , 𝐵, 0) ∈ C
1311, 12chlejb1i 28662 . 2 (if(𝐴C , 𝐴, 0) ⊆ if(𝐵C , 𝐵, 0) ↔ (if(𝐴C , 𝐴, 0) ∨ if(𝐵C , 𝐵, 0)) = if(𝐵C , 𝐵, 0))
144, 9, 13dedth2h 4336 1 ((𝐴C𝐵C ) → (𝐴𝐵 ↔ (𝐴 𝐵) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  wss 3769  ifcif 4279  (class class class)co 6870   C cch 28113   chj 28117  0c0h 28119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-inf2 8781  ax-cc 9538  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294  ax-pre-sup 10295  ax-addf 10296  ax-mulf 10297  ax-hilex 28183  ax-hfvadd 28184  ax-hvcom 28185  ax-hvass 28186  ax-hv0cl 28187  ax-hvaddid 28188  ax-hfvmul 28189  ax-hvmulid 28190  ax-hvmulass 28191  ax-hvdistr1 28192  ax-hvdistr2 28193  ax-hvmul0 28194  ax-hfi 28263  ax-his1 28266  ax-his2 28267  ax-his3 28268  ax-his4 28269  ax-hcompl 28386
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-iin 4715  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-isom 6106  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-of 7123  df-om 7292  df-1st 7394  df-2nd 7395  df-supp 7526  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-1o 7792  df-2o 7793  df-oadd 7796  df-omul 7797  df-er 7975  df-map 8090  df-pm 8091  df-ixp 8142  df-en 8189  df-dom 8190  df-sdom 8191  df-fin 8192  df-fsupp 8511  df-fi 8552  df-sup 8583  df-inf 8584  df-oi 8650  df-card 9044  df-acn 9047  df-cda 9271  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-div 10966  df-nn 11302  df-2 11360  df-3 11361  df-4 11362  df-5 11363  df-6 11364  df-7 11365  df-8 11366  df-9 11367  df-n0 11556  df-z 11640  df-dec 11756  df-uz 11901  df-q 12004  df-rp 12043  df-xneg 12158  df-xadd 12159  df-xmul 12160  df-ioo 12393  df-ico 12395  df-icc 12396  df-fz 12546  df-fzo 12686  df-fl 12813  df-seq 13021  df-exp 13080  df-hash 13334  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-rlim 14439  df-sum 14636  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16284  df-topn 16285  df-0g 16303  df-gsum 16304  df-topgen 16305  df-pt 16306  df-prds 16309  df-xrs 16363  df-qtop 16368  df-imas 16369  df-xps 16371  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17947  df-cmn 18392  df-psmet 19942  df-xmet 19943  df-met 19944  df-bl 19945  df-mopn 19946  df-fbas 19947  df-fg 19948  df-cnfld 19951  df-top 20909  df-topon 20926  df-topsp 20948  df-bases 20961  df-cld 21034  df-ntr 21035  df-cls 21036  df-nei 21113  df-cn 21242  df-cnp 21243  df-lm 21244  df-haus 21330  df-tx 21576  df-hmeo 21769  df-fil 21860  df-fm 21952  df-flim 21953  df-flf 21954  df-xms 22335  df-ms 22336  df-tms 22337  df-cfil 23263  df-cau 23264  df-cmet 23265  df-grpo 27675  df-gid 27676  df-ginv 27677  df-gdiv 27678  df-ablo 27727  df-vc 27741  df-nv 27774  df-va 27777  df-ba 27778  df-sm 27779  df-0v 27780  df-vs 27781  df-nmcv 27782  df-ims 27783  df-dip 27883  df-ssp 27904  df-ph 27995  df-cbn 28046  df-hnorm 28152  df-hba 28153  df-hvsub 28155  df-hlim 28156  df-hcau 28157  df-sh 28391  df-ch 28405  df-oc 28436  df-ch0 28437  df-shs 28494  df-chj 28496
This theorem is referenced by:  chlejb2  28699  mdsymlem1  29589
  Copyright terms: Public domain W3C validator