Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  binom2 Structured version   Visualization version   GIF version

Theorem binom2 13573
 Description: The square of a binomial. (Contributed by FL, 10-Dec-2006.)
Assertion
Ref Expression
binom2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))

Proof of Theorem binom2
StepHypRef Expression
1 oveq1 7157 . . . 4 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴 + 𝐵) = (if(𝐴 ∈ ℂ, 𝐴, 0) + 𝐵))
21oveq1d 7165 . . 3 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴 + 𝐵)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) + 𝐵)↑2))
3 oveq1 7157 . . . . 5 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴↑2) = (if(𝐴 ∈ ℂ, 𝐴, 0)↑2))
4 oveq1 7157 . . . . . 6 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴 · 𝐵) = (if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵))
54oveq2d 7166 . . . . 5 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (2 · (𝐴 · 𝐵)) = (2 · (if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵)))
63, 5oveq12d 7168 . . . 4 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) = ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) + (2 · (if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵))))
76oveq1d 7165 . . 3 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) = (((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) + (2 · (if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵))) + (𝐵↑2)))
82, 7eqeq12d 2837 . 2 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) ↔ ((if(𝐴 ∈ ℂ, 𝐴, 0) + 𝐵)↑2) = (((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) + (2 · (if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵))) + (𝐵↑2))))
9 oveq2 7158 . . . 4 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℂ, 𝐴, 0) + if(𝐵 ∈ ℂ, 𝐵, 0)))
109oveq1d 7165 . . 3 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0) + 𝐵)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) + if(𝐵 ∈ ℂ, 𝐵, 0))↑2))
11 oveq2 7158 . . . . . 6 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵) = (if(𝐴 ∈ ℂ, 𝐴, 0) · if(𝐵 ∈ ℂ, 𝐵, 0)))
1211oveq2d 7166 . . . . 5 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (2 · (if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵)) = (2 · (if(𝐴 ∈ ℂ, 𝐴, 0) · if(𝐵 ∈ ℂ, 𝐵, 0))))
1312oveq2d 7166 . . . 4 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) + (2 · (if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵))) = ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) + (2 · (if(𝐴 ∈ ℂ, 𝐴, 0) · if(𝐵 ∈ ℂ, 𝐵, 0)))))
14 oveq1 7157 . . . 4 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (𝐵↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2))
1513, 14oveq12d 7168 . . 3 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) + (2 · (if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵))) + (𝐵↑2)) = (((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) + (2 · (if(𝐴 ∈ ℂ, 𝐴, 0) · if(𝐵 ∈ ℂ, 𝐵, 0)))) + (if(𝐵 ∈ ℂ, 𝐵, 0)↑2)))
1610, 15eqeq12d 2837 . 2 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((if(𝐴 ∈ ℂ, 𝐴, 0) + 𝐵)↑2) = (((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) + (2 · (if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵))) + (𝐵↑2)) ↔ ((if(𝐴 ∈ ℂ, 𝐴, 0) + if(𝐵 ∈ ℂ, 𝐵, 0))↑2) = (((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) + (2 · (if(𝐴 ∈ ℂ, 𝐴, 0) · if(𝐵 ∈ ℂ, 𝐵, 0)))) + (if(𝐵 ∈ ℂ, 𝐵, 0)↑2))))
17 0cn 10627 . . . 4 0 ∈ ℂ
1817elimel 4534 . . 3 if(𝐴 ∈ ℂ, 𝐴, 0) ∈ ℂ
1917elimel 4534 . . 3 if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ
2018, 19binom2i 13568 . 2 ((if(𝐴 ∈ ℂ, 𝐴, 0) + if(𝐵 ∈ ℂ, 𝐵, 0))↑2) = (((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) + (2 · (if(𝐴 ∈ ℂ, 𝐴, 0) · if(𝐵 ∈ ℂ, 𝐵, 0)))) + (if(𝐵 ∈ ℂ, 𝐵, 0)↑2))
218, 16, 20dedth2h 4524 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1533   ∈ wcel 2110  ifcif 4467  (class class class)co 7150  ℂcc 10529  0cc0 10531   + caddc 10534   · cmul 10536  2c2 11686  ↑cexp 13423 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-seq 13364  df-exp 13424 This theorem is referenced by:  binom21  13574  binom2sub  13575  mulbinom2  13578  binom3  13579  sqrlem7  14602  abstri  14684  sqreulem  14713  amgm2  14723  bhmafibid1cn  14817  bhmafibid2cn  14818  pythagtriplem1  16147  pythagtriplem12  16157  tcphcphlem1  23832  csbren  23996  trirn  23997  tanarg  25196  heron  25410  quad2  25411  dquartlem2  25424  dquart  25425  quart1  25428  binom2d  39269  stirlinglem10  42361  itsclc0xyqsolr  44749  2itscplem2  44759
 Copyright terms: Public domain W3C validator