![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqeqor | Structured version Visualization version GIF version |
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by Paul Chapman, 15-Mar-2008.) |
Ref | Expression |
---|---|
sqeqor | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7409 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴↑2) = (if(𝐴 ∈ ℂ, 𝐴, 0)↑2)) | |
2 | 1 | eqeq1d 2726 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2))) |
3 | eqeq1 2728 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴 = 𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵)) | |
4 | eqeq1 2728 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴 = -𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵)) | |
5 | 3, 4 | orbi12d 915 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴 = 𝐵 ∨ 𝐴 = -𝐵) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵))) |
6 | 2, 5 | bibi12d 345 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) ↔ ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵)))) |
7 | oveq1 7409 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (𝐵↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2)) | |
8 | 7 | eqeq2d 2735 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2))) |
9 | eqeq2 2736 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0))) | |
10 | negeq 11450 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → -𝐵 = -if(𝐵 ∈ ℂ, 𝐵, 0)) | |
11 | 10 | eqeq2d 2735 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0))) |
12 | 9, 11 | orbi12d 915 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0) ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0)))) |
13 | 8, 12 | bibi12d 345 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵)) ↔ ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0) ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0))))) |
14 | 0cn 11204 | . . . 4 ⊢ 0 ∈ ℂ | |
15 | 14 | elimel 4590 | . . 3 ⊢ if(𝐴 ∈ ℂ, 𝐴, 0) ∈ ℂ |
16 | 14 | elimel 4590 | . . 3 ⊢ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ |
17 | 15, 16 | sqeqori 14176 | . 2 ⊢ ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0) ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0))) |
18 | 6, 13, 17 | dedth2h 4580 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ifcif 4521 (class class class)co 7402 ℂcc 11105 0cc0 11107 -cneg 11443 2c2 12265 ↑cexp 14025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-2 12273 df-n0 12471 df-z 12557 df-uz 12821 df-seq 13965 df-exp 14026 |
This theorem is referenced by: sqeqd 15111 sqrmo 15196 eqsqrtor 15311 4sqlem10 16881 cxpsqrt 26556 quad2 26690 atandm3 26729 atans2 26782 dvasin 37066 dvacos 37067 sqrtcval 42906 itschlc0xyqsol1 47665 |
Copyright terms: Public domain | W3C validator |