![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqeqor | Structured version Visualization version GIF version |
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by Paul Chapman, 15-Mar-2008.) |
Ref | Expression |
---|---|
sqeqor | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7364 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴↑2) = (if(𝐴 ∈ ℂ, 𝐴, 0)↑2)) | |
2 | 1 | eqeq1d 2738 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2))) |
3 | eqeq1 2740 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴 = 𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵)) | |
4 | eqeq1 2740 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴 = -𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵)) | |
5 | 3, 4 | orbi12d 917 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴 = 𝐵 ∨ 𝐴 = -𝐵) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵))) |
6 | 2, 5 | bibi12d 345 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) ↔ ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵)))) |
7 | oveq1 7364 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (𝐵↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2)) | |
8 | 7 | eqeq2d 2747 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2))) |
9 | eqeq2 2748 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0))) | |
10 | negeq 11393 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → -𝐵 = -if(𝐵 ∈ ℂ, 𝐵, 0)) | |
11 | 10 | eqeq2d 2747 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0))) |
12 | 9, 11 | orbi12d 917 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0) ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0)))) |
13 | 8, 12 | bibi12d 345 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵)) ↔ ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0) ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0))))) |
14 | 0cn 11147 | . . . 4 ⊢ 0 ∈ ℂ | |
15 | 14 | elimel 4555 | . . 3 ⊢ if(𝐴 ∈ ℂ, 𝐴, 0) ∈ ℂ |
16 | 14 | elimel 4555 | . . 3 ⊢ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ |
17 | 15, 16 | sqeqori 14118 | . 2 ⊢ ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0) ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0))) |
18 | 6, 13, 17 | dedth2h 4545 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ifcif 4486 (class class class)co 7357 ℂcc 11049 0cc0 11051 -cneg 11386 2c2 12208 ↑cexp 13967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-n0 12414 df-z 12500 df-uz 12764 df-seq 13907 df-exp 13968 |
This theorem is referenced by: sqeqd 15051 sqrmo 15136 eqsqrtor 15251 4sqlem10 16819 cxpsqrt 26058 quad2 26189 atandm3 26228 atans2 26281 dvasin 36162 dvacos 36163 sqrtcval 41903 itschlc0xyqsol1 46842 |
Copyright terms: Public domain | W3C validator |