| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqeqor | Structured version Visualization version GIF version | ||
| Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by Paul Chapman, 15-Mar-2008.) |
| Ref | Expression |
|---|---|
| sqeqor | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7376 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴↑2) = (if(𝐴 ∈ ℂ, 𝐴, 0)↑2)) | |
| 2 | 1 | eqeq1d 2731 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2))) |
| 3 | eqeq1 2733 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴 = 𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵)) | |
| 4 | eqeq1 2733 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴 = -𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵)) | |
| 5 | 3, 4 | orbi12d 918 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴 = 𝐵 ∨ 𝐴 = -𝐵) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵))) |
| 6 | 2, 5 | bibi12d 345 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) ↔ ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵)))) |
| 7 | oveq1 7376 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (𝐵↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2)) | |
| 8 | 7 | eqeq2d 2740 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2))) |
| 9 | eqeq2 2741 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0))) | |
| 10 | negeq 11389 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → -𝐵 = -if(𝐵 ∈ ℂ, 𝐵, 0)) | |
| 11 | 10 | eqeq2d 2740 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0))) |
| 12 | 9, 11 | orbi12d 918 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0) ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0)))) |
| 13 | 8, 12 | bibi12d 345 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵)) ↔ ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0) ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0))))) |
| 14 | 0cn 11142 | . . . 4 ⊢ 0 ∈ ℂ | |
| 15 | 14 | elimel 4554 | . . 3 ⊢ if(𝐴 ∈ ℂ, 𝐴, 0) ∈ ℂ |
| 16 | 14 | elimel 4554 | . . 3 ⊢ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ |
| 17 | 15, 16 | sqeqori 14155 | . 2 ⊢ ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0) ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0))) |
| 18 | 6, 13, 17 | dedth2h 4544 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ifcif 4484 (class class class)co 7369 ℂcc 11042 0cc0 11044 -cneg 11382 2c2 12217 ↑cexp 14002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-seq 13943 df-exp 14003 |
| This theorem is referenced by: sqeqd 15108 sqrmo 15193 eqsqrtor 15309 4sqlem10 16894 cxpsqrt 26588 quad2 26725 atandm3 26764 atans2 26817 dvasin 37671 dvacos 37672 sqrtcval 43603 itschlc0xyqsol1 48728 |
| Copyright terms: Public domain | W3C validator |