| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqeqor | Structured version Visualization version GIF version | ||
| Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by Paul Chapman, 15-Mar-2008.) |
| Ref | Expression |
|---|---|
| sqeqor | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7397 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴↑2) = (if(𝐴 ∈ ℂ, 𝐴, 0)↑2)) | |
| 2 | 1 | eqeq1d 2732 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2))) |
| 3 | eqeq1 2734 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴 = 𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵)) | |
| 4 | eqeq1 2734 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴 = -𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵)) | |
| 5 | 3, 4 | orbi12d 918 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴 = 𝐵 ∨ 𝐴 = -𝐵) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵))) |
| 6 | 2, 5 | bibi12d 345 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) ↔ ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵)))) |
| 7 | oveq1 7397 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (𝐵↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2)) | |
| 8 | 7 | eqeq2d 2741 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2))) |
| 9 | eqeq2 2742 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0))) | |
| 10 | negeq 11420 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → -𝐵 = -if(𝐵 ∈ ℂ, 𝐵, 0)) | |
| 11 | 10 | eqeq2d 2741 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0))) |
| 12 | 9, 11 | orbi12d 918 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0) ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0)))) |
| 13 | 8, 12 | bibi12d 345 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵)) ↔ ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0) ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0))))) |
| 14 | 0cn 11173 | . . . 4 ⊢ 0 ∈ ℂ | |
| 15 | 14 | elimel 4561 | . . 3 ⊢ if(𝐴 ∈ ℂ, 𝐴, 0) ∈ ℂ |
| 16 | 14 | elimel 4561 | . . 3 ⊢ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ |
| 17 | 15, 16 | sqeqori 14186 | . 2 ⊢ ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0) ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0))) |
| 18 | 6, 13, 17 | dedth2h 4551 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ifcif 4491 (class class class)co 7390 ℂcc 11073 0cc0 11075 -cneg 11413 2c2 12248 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: sqeqd 15139 sqrmo 15224 eqsqrtor 15340 4sqlem10 16925 cxpsqrt 26619 quad2 26756 atandm3 26795 atans2 26848 dvasin 37705 dvacos 37706 sqrtcval 43637 itschlc0xyqsol1 48759 |
| Copyright terms: Public domain | W3C validator |