MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqeqor Structured version   Visualization version   GIF version

Theorem sqeqor 14120
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by Paul Chapman, 15-Mar-2008.)
Assertion
Ref Expression
sqeqor ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))

Proof of Theorem sqeqor
StepHypRef Expression
1 oveq1 7364 . . . 4 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴↑2) = (if(𝐴 ∈ ℂ, 𝐴, 0)↑2))
21eqeq1d 2738 . . 3 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2)))
3 eqeq1 2740 . . . 4 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴 = 𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵))
4 eqeq1 2740 . . . 4 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴 = -𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵))
53, 4orbi12d 917 . . 3 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴 = 𝐵𝐴 = -𝐵) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵)))
62, 5bibi12d 345 . 2 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)) ↔ ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵))))
7 oveq1 7364 . . . 4 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (𝐵↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2))
87eqeq2d 2747 . . 3 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2)))
9 eqeq2 2748 . . . 4 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0)))
10 negeq 11393 . . . . 5 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → -𝐵 = -if(𝐵 ∈ ℂ, 𝐵, 0))
1110eqeq2d 2747 . . . 4 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵 ↔ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0)))
129, 11orbi12d 917 . . 3 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0) ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0))))
138, 12bibi12d 345 . 2 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (𝐵↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = 𝐵 ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -𝐵)) ↔ ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0) ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0)))))
14 0cn 11147 . . . 4 0 ∈ ℂ
1514elimel 4555 . . 3 if(𝐴 ∈ ℂ, 𝐴, 0) ∈ ℂ
1614elimel 4555 . . 3 if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ
1715, 16sqeqori 14118 . 2 ((if(𝐴 ∈ ℂ, 𝐴, 0)↑2) = (if(𝐵 ∈ ℂ, 𝐵, 0)↑2) ↔ (if(𝐴 ∈ ℂ, 𝐴, 0) = if(𝐵 ∈ ℂ, 𝐵, 0) ∨ if(𝐴 ∈ ℂ, 𝐴, 0) = -if(𝐵 ∈ ℂ, 𝐵, 0)))
186, 13, 17dedth2h 4545 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  ifcif 4486  (class class class)co 7357  cc 11049  0cc0 11051  -cneg 11386  2c2 12208  cexp 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-seq 13907  df-exp 13968
This theorem is referenced by:  sqeqd  15051  sqrmo  15136  eqsqrtor  15251  4sqlem10  16819  cxpsqrt  26058  quad2  26189  atandm3  26228  atans2  26281  dvasin  36162  dvacos  36163  sqrtcval  41903  itschlc0xyqsol1  46842
  Copyright terms: Public domain W3C validator