![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shscl | Structured version Visualization version GIF version |
Description: Closure of subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shscl | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) ∈ Sℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7431 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Sℋ , 𝐴, ℋ) → (𝐴 +ℋ 𝐵) = (if(𝐴 ∈ Sℋ , 𝐴, ℋ) +ℋ 𝐵)) | |
2 | 1 | eleq1d 2811 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Sℋ , 𝐴, ℋ) → ((𝐴 +ℋ 𝐵) ∈ Sℋ ↔ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) +ℋ 𝐵) ∈ Sℋ )) |
3 | oveq2 7432 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, ℋ) → (if(𝐴 ∈ Sℋ , 𝐴, ℋ) +ℋ 𝐵) = (if(𝐴 ∈ Sℋ , 𝐴, ℋ) +ℋ if(𝐵 ∈ Sℋ , 𝐵, ℋ))) | |
4 | 3 | eleq1d 2811 | . 2 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, ℋ) → ((if(𝐴 ∈ Sℋ , 𝐴, ℋ) +ℋ 𝐵) ∈ Sℋ ↔ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) +ℋ if(𝐵 ∈ Sℋ , 𝐵, ℋ)) ∈ Sℋ )) |
5 | helsh 31178 | . . . 4 ⊢ ℋ ∈ Sℋ | |
6 | 5 | elimel 4602 | . . 3 ⊢ if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∈ Sℋ |
7 | 5 | elimel 4602 | . . 3 ⊢ if(𝐵 ∈ Sℋ , 𝐵, ℋ) ∈ Sℋ |
8 | 6, 7 | shscli 31250 | . 2 ⊢ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) +ℋ if(𝐵 ∈ Sℋ , 𝐵, ℋ)) ∈ Sℋ |
9 | 2, 4, 8 | dedth2h 4592 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) ∈ Sℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ifcif 4533 (class class class)co 7424 ℋchba 30852 Sℋ csh 30861 +ℋ cph 30864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-hilex 30932 ax-hfvadd 30933 ax-hvcom 30934 ax-hvass 30935 ax-hv0cl 30936 ax-hvaddid 30937 ax-hfvmul 30938 ax-hvmulid 30939 ax-hvdistr1 30941 ax-hvdistr2 30942 ax-hvmul0 30943 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-ltxr 11303 df-sub 11496 df-neg 11497 df-nn 12265 df-grpo 30426 df-ablo 30478 df-hvsub 30904 df-hlim 30905 df-sh 31140 df-ch 31154 df-shs 31241 |
This theorem is referenced by: shsvs 31256 spanpr 31513 chscllem2 31571 chscl 31574 |
Copyright terms: Public domain | W3C validator |