Mathbox for Paul Chapman |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > abs2sqle | Structured version Visualization version GIF version |
Description: The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
Ref | Expression |
---|---|
abs2sqle | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) ≤ (abs‘𝐵) ↔ ((abs‘𝐴)↑2) ≤ ((abs‘𝐵)↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6834 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (abs‘𝐴) = (abs‘if(𝐴 ∈ ℂ, 𝐴, 0))) | |
2 | 1 | breq1d 5110 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((abs‘𝐴) ≤ (abs‘𝐵) ↔ (abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) ≤ (abs‘𝐵))) |
3 | 1 | oveq1d 7361 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((abs‘𝐴)↑2) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2)) |
4 | 3 | breq1d 5110 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((abs‘𝐴)↑2) ≤ ((abs‘𝐵)↑2) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) ≤ ((abs‘𝐵)↑2))) |
5 | 2, 4 | bibi12d 346 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((abs‘𝐴) ≤ (abs‘𝐵) ↔ ((abs‘𝐴)↑2) ≤ ((abs‘𝐵)↑2)) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) ≤ (abs‘𝐵) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) ≤ ((abs‘𝐵)↑2)))) |
6 | fveq2 6834 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (abs‘𝐵) = (abs‘if(𝐵 ∈ ℂ, 𝐵, 0))) | |
7 | 6 | breq2d 5112 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) ≤ (abs‘𝐵) ↔ (abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) ≤ (abs‘if(𝐵 ∈ ℂ, 𝐵, 0)))) |
8 | oveq1 7353 | . . . . 5 ⊢ ((abs‘𝐵) = (abs‘if(𝐵 ∈ ℂ, 𝐵, 0)) → ((abs‘𝐵)↑2) = ((abs‘if(𝐵 ∈ ℂ, 𝐵, 0))↑2)) | |
9 | 8 | breq2d 5112 | . . . 4 ⊢ ((abs‘𝐵) = (abs‘if(𝐵 ∈ ℂ, 𝐵, 0)) → (((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) ≤ ((abs‘𝐵)↑2) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) ≤ ((abs‘if(𝐵 ∈ ℂ, 𝐵, 0))↑2))) |
10 | 6, 9 | syl 17 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) ≤ ((abs‘𝐵)↑2) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) ≤ ((abs‘if(𝐵 ∈ ℂ, 𝐵, 0))↑2))) |
11 | 7, 10 | bibi12d 346 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) ≤ (abs‘𝐵) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) ≤ ((abs‘𝐵)↑2)) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) ≤ (abs‘if(𝐵 ∈ ℂ, 𝐵, 0)) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) ≤ ((abs‘if(𝐵 ∈ ℂ, 𝐵, 0))↑2)))) |
12 | 0cn 11077 | . . . 4 ⊢ 0 ∈ ℂ | |
13 | 12 | elimel 4550 | . . 3 ⊢ if(𝐴 ∈ ℂ, 𝐴, 0) ∈ ℂ |
14 | 12 | elimel 4550 | . . 3 ⊢ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ |
15 | 13, 14 | abs2sqlei 33999 | . 2 ⊢ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) ≤ (abs‘if(𝐵 ∈ ℂ, 𝐵, 0)) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) ≤ ((abs‘if(𝐵 ∈ ℂ, 𝐵, 0))↑2)) |
16 | 5, 11, 15 | dedth2h 4540 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) ≤ (abs‘𝐵) ↔ ((abs‘𝐴)↑2) ≤ ((abs‘𝐵)↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ifcif 4481 class class class wbr 5100 ‘cfv 6488 (class class class)co 7346 ℂcc 10979 0cc0 10981 ≤ cle 11120 2c2 12138 ↑cexp 13892 abscabs 15049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 ax-pre-sup 11059 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-sup 9308 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-div 11743 df-nn 12084 df-2 12146 df-3 12147 df-n0 12344 df-z 12430 df-uz 12693 df-rp 12841 df-seq 13832 df-exp 13893 df-cj 14914 df-re 14915 df-im 14916 df-sqrt 15050 df-abs 15051 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |