Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraaub Structured version   Visualization version   GIF version

Theorem dgraaub 38561
Description: Upper bound on degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.)
Assertion
Ref Expression
dgraaub (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (degAA𝐴) ≤ (deg‘𝑃))

Proof of Theorem dgraaub
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 789 . . . 4 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → 𝐴 ∈ ℂ)
2 eldifsn 4536 . . . . . . 7 (𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ (𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝))
32biimpri 220 . . . . . 6 ((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) → 𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
43adantr 474 . . . . 5 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → 𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
5 simprr 791 . . . . 5 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (𝑃𝐴) = 0)
6 fveq1 6432 . . . . . . 7 (𝑎 = 𝑃 → (𝑎𝐴) = (𝑃𝐴))
76eqeq1d 2827 . . . . . 6 (𝑎 = 𝑃 → ((𝑎𝐴) = 0 ↔ (𝑃𝐴) = 0))
87rspcev 3526 . . . . 5 ((𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑃𝐴) = 0) → ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑎𝐴) = 0)
94, 5, 8syl2anc 581 . . . 4 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑎𝐴) = 0)
10 elqaa 24476 . . . 4 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑎𝐴) = 0))
111, 9, 10sylanbrc 580 . . 3 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → 𝐴 ∈ 𝔸)
12 dgraaval 38557 . . 3 (𝐴 ∈ 𝔸 → (degAA𝐴) = inf({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}, ℝ, < ))
1311, 12syl 17 . 2 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (degAA𝐴) = inf({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}, ℝ, < ))
14 ssrab2 3912 . . . 4 {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)} ⊆ ℕ
15 nnuz 12005 . . . 4 ℕ = (ℤ‘1)
1614, 15sseqtri 3862 . . 3 {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)} ⊆ (ℤ‘1)
17 dgrnznn 24402 . . . 4 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (deg‘𝑃) ∈ ℕ)
18 eqid 2825 . . . . . 6 (deg‘𝑃) = (deg‘𝑃)
195, 18jctil 517 . . . . 5 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ((deg‘𝑃) = (deg‘𝑃) ∧ (𝑃𝐴) = 0))
20 fveqeq2 6442 . . . . . . 7 (𝑏 = 𝑃 → ((deg‘𝑏) = (deg‘𝑃) ↔ (deg‘𝑃) = (deg‘𝑃)))
21 fveq1 6432 . . . . . . . 8 (𝑏 = 𝑃 → (𝑏𝐴) = (𝑃𝐴))
2221eqeq1d 2827 . . . . . . 7 (𝑏 = 𝑃 → ((𝑏𝐴) = 0 ↔ (𝑃𝐴) = 0))
2320, 22anbi12d 626 . . . . . 6 (𝑏 = 𝑃 → (((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0) ↔ ((deg‘𝑃) = (deg‘𝑃) ∧ (𝑃𝐴) = 0)))
2423rspcev 3526 . . . . 5 ((𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ ((deg‘𝑃) = (deg‘𝑃) ∧ (𝑃𝐴) = 0)) → ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0))
254, 19, 24syl2anc 581 . . . 4 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0))
26 eqeq2 2836 . . . . . . 7 (𝑎 = (deg‘𝑃) → ((deg‘𝑏) = 𝑎 ↔ (deg‘𝑏) = (deg‘𝑃)))
2726anbi1d 625 . . . . . 6 (𝑎 = (deg‘𝑃) → (((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0) ↔ ((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0)))
2827rexbidv 3262 . . . . 5 (𝑎 = (deg‘𝑃) → (∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0) ↔ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0)))
2928elrab 3585 . . . 4 ((deg‘𝑃) ∈ {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)} ↔ ((deg‘𝑃) ∈ ℕ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0)))
3017, 25, 29sylanbrc 580 . . 3 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (deg‘𝑃) ∈ {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)})
31 infssuzle 12054 . . 3 (({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)} ⊆ (ℤ‘1) ∧ (deg‘𝑃) ∈ {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}) → inf({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}, ℝ, < ) ≤ (deg‘𝑃))
3216, 30, 31sylancr 583 . 2 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → inf({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}, ℝ, < ) ≤ (deg‘𝑃))
3313, 32eqbrtrd 4895 1 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (degAA𝐴) ≤ (deg‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  wne 2999  wrex 3118  {crab 3121  cdif 3795  wss 3798  {csn 4397   class class class wbr 4873  cfv 6123  infcinf 8616  cc 10250  cr 10251  0cc0 10252  1c1 10253   < clt 10391  cle 10392  cn 11350  cuz 11968  cq 12071  0𝑝c0p 23835  Polycply 24339  degcdgr 24342  𝔸caa 24468  degAAcdgraa 38553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-q 12072  df-rp 12113  df-fz 12620  df-fzo 12761  df-fl 12888  df-mod 12964  df-seq 13096  df-exp 13155  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-rlim 14597  df-sum 14794  df-0p 23836  df-ply 24343  df-coe 24345  df-dgr 24346  df-aa 24469  df-dgraa 38555
This theorem is referenced by:  dgraa0p  38562
  Copyright terms: Public domain W3C validator