Step | Hyp | Ref
| Expression |
1 | | simprl 769 |
. . . 4
β’ (((π β (Polyββ)
β§ π β
0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β π΄ β β) |
2 | | eldifsn 4789 |
. . . . . . 7
β’ (π β ((Polyββ)
β {0π}) β (π β (Polyββ) β§ π β
0π)) |
3 | 2 | biimpri 227 |
. . . . . 6
β’ ((π β (Polyββ)
β§ π β
0π) β π β ((Polyββ) β
{0π})) |
4 | 3 | adantr 481 |
. . . . 5
β’ (((π β (Polyββ)
β§ π β
0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β π β ((Polyββ) β
{0π})) |
5 | | simprr 771 |
. . . . 5
β’ (((π β (Polyββ)
β§ π β
0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β (πβπ΄) = 0) |
6 | | fveq1 6887 |
. . . . . . 7
β’ (π = π β (πβπ΄) = (πβπ΄)) |
7 | 6 | eqeq1d 2734 |
. . . . . 6
β’ (π = π β ((πβπ΄) = 0 β (πβπ΄) = 0)) |
8 | 7 | rspcev 3612 |
. . . . 5
β’ ((π β ((Polyββ)
β {0π}) β§ (πβπ΄) = 0) β βπ β ((Polyββ) β
{0π})(πβπ΄) = 0) |
9 | 4, 5, 8 | syl2anc 584 |
. . . 4
β’ (((π β (Polyββ)
β§ π β
0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β βπ β ((Polyββ) β
{0π})(πβπ΄) = 0) |
10 | | elqaa 25826 |
. . . 4
β’ (π΄ β πΈ β (π΄ β β β§
βπ β
((Polyββ) β {0π})(πβπ΄) = 0)) |
11 | 1, 9, 10 | sylanbrc 583 |
. . 3
β’ (((π β (Polyββ)
β§ π β
0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β π΄ β πΈ) |
12 | | dgraaval 41871 |
. . 3
β’ (π΄ β πΈ β
(degAAβπ΄)
= inf({π β β
β£ βπ β
((Polyββ) β {0π})((degβπ) = π β§ (πβπ΄) = 0)}, β, < )) |
13 | 11, 12 | syl 17 |
. 2
β’ (((π β (Polyββ)
β§ π β
0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β (degAAβπ΄) = inf({π β β β£ βπ β ((Polyββ)
β {0π})((degβπ) = π β§ (πβπ΄) = 0)}, β, < )) |
14 | | ssrab2 4076 |
. . . 4
β’ {π β β β£
βπ β
((Polyββ) β {0π})((degβπ) = π β§ (πβπ΄) = 0)} β β |
15 | | nnuz 12861 |
. . . 4
β’ β =
(β€β₯β1) |
16 | 14, 15 | sseqtri 4017 |
. . 3
β’ {π β β β£
βπ β
((Polyββ) β {0π})((degβπ) = π β§ (πβπ΄) = 0)} β
(β€β₯β1) |
17 | | dgrnznn 25752 |
. . . 4
β’ (((π β (Polyββ)
β§ π β
0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β (degβπ) β β) |
18 | | eqid 2732 |
. . . . . 6
β’
(degβπ) =
(degβπ) |
19 | 5, 18 | jctil 520 |
. . . . 5
β’ (((π β (Polyββ)
β§ π β
0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β ((degβπ) = (degβπ) β§ (πβπ΄) = 0)) |
20 | | fveqeq2 6897 |
. . . . . . 7
β’ (π = π β ((degβπ) = (degβπ) β (degβπ) = (degβπ))) |
21 | | fveq1 6887 |
. . . . . . . 8
β’ (π = π β (πβπ΄) = (πβπ΄)) |
22 | 21 | eqeq1d 2734 |
. . . . . . 7
β’ (π = π β ((πβπ΄) = 0 β (πβπ΄) = 0)) |
23 | 20, 22 | anbi12d 631 |
. . . . . 6
β’ (π = π β (((degβπ) = (degβπ) β§ (πβπ΄) = 0) β ((degβπ) = (degβπ) β§ (πβπ΄) = 0))) |
24 | 23 | rspcev 3612 |
. . . . 5
β’ ((π β ((Polyββ)
β {0π}) β§ ((degβπ) = (degβπ) β§ (πβπ΄) = 0)) β βπ β ((Polyββ) β
{0π})((degβπ) = (degβπ) β§ (πβπ΄) = 0)) |
25 | 4, 19, 24 | syl2anc 584 |
. . . 4
β’ (((π β (Polyββ)
β§ π β
0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β βπ β ((Polyββ) β
{0π})((degβπ) = (degβπ) β§ (πβπ΄) = 0)) |
26 | | eqeq2 2744 |
. . . . . . 7
β’ (π = (degβπ) β ((degβπ) = π β (degβπ) = (degβπ))) |
27 | 26 | anbi1d 630 |
. . . . . 6
β’ (π = (degβπ) β (((degβπ) = π β§ (πβπ΄) = 0) β ((degβπ) = (degβπ) β§ (πβπ΄) = 0))) |
28 | 27 | rexbidv 3178 |
. . . . 5
β’ (π = (degβπ) β (βπ β ((Polyββ) β
{0π})((degβπ) = π β§ (πβπ΄) = 0) β βπ β ((Polyββ) β
{0π})((degβπ) = (degβπ) β§ (πβπ΄) = 0))) |
29 | 28 | elrab 3682 |
. . . 4
β’
((degβπ)
β {π β β
β£ βπ β
((Polyββ) β {0π})((degβπ) = π β§ (πβπ΄) = 0)} β ((degβπ) β β β§ βπ β ((Polyββ)
β {0π})((degβπ) = (degβπ) β§ (πβπ΄) = 0))) |
30 | 17, 25, 29 | sylanbrc 583 |
. . 3
β’ (((π β (Polyββ)
β§ π β
0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β (degβπ) β {π β β β£ βπ β ((Polyββ)
β {0π})((degβπ) = π β§ (πβπ΄) = 0)}) |
31 | | infssuzle 12911 |
. . 3
β’ (({π β β β£
βπ β
((Polyββ) β {0π})((degβπ) = π β§ (πβπ΄) = 0)} β
(β€β₯β1) β§ (degβπ) β {π β β β£ βπ β ((Polyββ)
β {0π})((degβπ) = π β§ (πβπ΄) = 0)}) β inf({π β β β£ βπ β ((Polyββ)
β {0π})((degβπ) = π β§ (πβπ΄) = 0)}, β, < ) β€
(degβπ)) |
32 | 16, 30, 31 | sylancr 587 |
. 2
β’ (((π β (Polyββ)
β§ π β
0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β inf({π β β β£ βπ β ((Polyββ)
β {0π})((degβπ) = π β§ (πβπ΄) = 0)}, β, < ) β€
(degβπ)) |
33 | 13, 32 | eqbrtrd 5169 |
1
β’ (((π β (Polyββ)
β§ π β
0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β (degAAβπ΄) β€ (degβπ)) |