Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraaub Structured version   Visualization version   GIF version

Theorem dgraaub 39741
Description: Upper bound on degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.)
Assertion
Ref Expression
dgraaub (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (degAA𝐴) ≤ (deg‘𝑃))

Proof of Theorem dgraaub
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 769 . . . 4 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → 𝐴 ∈ ℂ)
2 eldifsn 4713 . . . . . . 7 (𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ (𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝))
32biimpri 230 . . . . . 6 ((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) → 𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
43adantr 483 . . . . 5 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → 𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
5 simprr 771 . . . . 5 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (𝑃𝐴) = 0)
6 fveq1 6664 . . . . . . 7 (𝑎 = 𝑃 → (𝑎𝐴) = (𝑃𝐴))
76eqeq1d 2823 . . . . . 6 (𝑎 = 𝑃 → ((𝑎𝐴) = 0 ↔ (𝑃𝐴) = 0))
87rspcev 3623 . . . . 5 ((𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑃𝐴) = 0) → ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑎𝐴) = 0)
94, 5, 8syl2anc 586 . . . 4 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑎𝐴) = 0)
10 elqaa 24905 . . . 4 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑎𝐴) = 0))
111, 9, 10sylanbrc 585 . . 3 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → 𝐴 ∈ 𝔸)
12 dgraaval 39737 . . 3 (𝐴 ∈ 𝔸 → (degAA𝐴) = inf({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}, ℝ, < ))
1311, 12syl 17 . 2 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (degAA𝐴) = inf({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}, ℝ, < ))
14 ssrab2 4056 . . . 4 {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)} ⊆ ℕ
15 nnuz 12275 . . . 4 ℕ = (ℤ‘1)
1614, 15sseqtri 4003 . . 3 {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)} ⊆ (ℤ‘1)
17 dgrnznn 24831 . . . 4 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (deg‘𝑃) ∈ ℕ)
18 eqid 2821 . . . . . 6 (deg‘𝑃) = (deg‘𝑃)
195, 18jctil 522 . . . . 5 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ((deg‘𝑃) = (deg‘𝑃) ∧ (𝑃𝐴) = 0))
20 fveqeq2 6674 . . . . . . 7 (𝑏 = 𝑃 → ((deg‘𝑏) = (deg‘𝑃) ↔ (deg‘𝑃) = (deg‘𝑃)))
21 fveq1 6664 . . . . . . . 8 (𝑏 = 𝑃 → (𝑏𝐴) = (𝑃𝐴))
2221eqeq1d 2823 . . . . . . 7 (𝑏 = 𝑃 → ((𝑏𝐴) = 0 ↔ (𝑃𝐴) = 0))
2320, 22anbi12d 632 . . . . . 6 (𝑏 = 𝑃 → (((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0) ↔ ((deg‘𝑃) = (deg‘𝑃) ∧ (𝑃𝐴) = 0)))
2423rspcev 3623 . . . . 5 ((𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ ((deg‘𝑃) = (deg‘𝑃) ∧ (𝑃𝐴) = 0)) → ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0))
254, 19, 24syl2anc 586 . . . 4 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0))
26 eqeq2 2833 . . . . . . 7 (𝑎 = (deg‘𝑃) → ((deg‘𝑏) = 𝑎 ↔ (deg‘𝑏) = (deg‘𝑃)))
2726anbi1d 631 . . . . . 6 (𝑎 = (deg‘𝑃) → (((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0) ↔ ((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0)))
2827rexbidv 3297 . . . . 5 (𝑎 = (deg‘𝑃) → (∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0) ↔ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0)))
2928elrab 3680 . . . 4 ((deg‘𝑃) ∈ {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)} ↔ ((deg‘𝑃) ∈ ℕ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0)))
3017, 25, 29sylanbrc 585 . . 3 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (deg‘𝑃) ∈ {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)})
31 infssuzle 12325 . . 3 (({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)} ⊆ (ℤ‘1) ∧ (deg‘𝑃) ∈ {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}) → inf({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}, ℝ, < ) ≤ (deg‘𝑃))
3216, 30, 31sylancr 589 . 2 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → inf({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}, ℝ, < ) ≤ (deg‘𝑃))
3313, 32eqbrtrd 5081 1 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (degAA𝐴) ≤ (deg‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  wrex 3139  {crab 3142  cdif 3933  wss 3936  {csn 4561   class class class wbr 5059  cfv 6350  infcinf 8899  cc 10529  cr 10530  0cc0 10531  1c1 10532   < clt 10669  cle 10670  cn 11632  cuz 12237  cq 12342  0𝑝c0p 24264  Polycply 24768  degcdgr 24771  𝔸caa 24897  degAAcdgraa 39733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-0p 24265  df-ply 24772  df-coe 24774  df-dgr 24775  df-aa 24898  df-dgraa 39735
This theorem is referenced by:  dgraa0p  39742
  Copyright terms: Public domain W3C validator