| Step | Hyp | Ref
| Expression |
| 1 | | dgraaval 43135 |
. . 3
⊢ (𝐴 ∈ 𝔸 →
(degAA‘𝐴)
= inf({𝑎 ∈ ℕ
∣ ∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0)}, ℝ, < )) |
| 2 | | ssrab2 4060 |
. . . . 5
⊢ {𝑎 ∈ ℕ ∣
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0)} ⊆ ℕ |
| 3 | | nnuz 12900 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
| 4 | 2, 3 | sseqtri 4012 |
. . . 4
⊢ {𝑎 ∈ ℕ ∣
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0)} ⊆
(ℤ≥‘1) |
| 5 | | eldifsn 4767 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ ((Poly‘ℚ)
∖ {0𝑝}) ↔ (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠
0𝑝)) |
| 6 | 5 | biimpi 216 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ ((Poly‘ℚ)
∖ {0𝑝}) → (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠
0𝑝)) |
| 7 | 6 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝑏 ∈ ((Poly‘ℚ)
∖ {0𝑝}) ∧ (𝑏‘𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠
0𝑝)) |
| 8 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑏 ∈ ((Poly‘ℚ)
∖ {0𝑝}) ∧ (𝑏‘𝐴) = 0) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ) |
| 9 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝑏 ∈ ((Poly‘ℚ)
∖ {0𝑝}) ∧ (𝑏‘𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (𝑏‘𝐴) = 0) |
| 10 | | dgrnznn 26209 |
. . . . . . . . . 10
⊢ (((𝑏 ∈ (Poly‘ℚ)
∧ 𝑏 ≠
0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑏‘𝐴) = 0)) → (deg‘𝑏) ∈ ℕ) |
| 11 | 7, 8, 9, 10 | syl12anc 836 |
. . . . . . . . 9
⊢ (((𝑏 ∈ ((Poly‘ℚ)
∖ {0𝑝}) ∧ (𝑏‘𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (deg‘𝑏) ∈
ℕ) |
| 12 | | simpll 766 |
. . . . . . . . 9
⊢ (((𝑏 ∈ ((Poly‘ℚ)
∖ {0𝑝}) ∧ (𝑏‘𝐴) = 0) ∧ 𝐴 ∈ ℂ) → 𝑏 ∈ ((Poly‘ℚ) ∖
{0𝑝})) |
| 13 | | eqid 2736 |
. . . . . . . . . 10
⊢
(deg‘𝑏) =
(deg‘𝑏) |
| 14 | 9, 13 | jctil 519 |
. . . . . . . . 9
⊢ (((𝑏 ∈ ((Poly‘ℚ)
∖ {0𝑝}) ∧ (𝑏‘𝐴) = 0) ∧ 𝐴 ∈ ℂ) → ((deg‘𝑏) = (deg‘𝑏) ∧ (𝑏‘𝐴) = 0)) |
| 15 | | eqeq2 2748 |
. . . . . . . . . . 11
⊢ (𝑎 = (deg‘𝑏) → ((deg‘𝑝) = 𝑎 ↔ (deg‘𝑝) = (deg‘𝑏))) |
| 16 | 15 | anbi1d 631 |
. . . . . . . . . 10
⊢ (𝑎 = (deg‘𝑏) → (((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0) ↔ ((deg‘𝑝) = (deg‘𝑏) ∧ (𝑝‘𝐴) = 0))) |
| 17 | | fveqeq2 6890 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑏 → ((deg‘𝑝) = (deg‘𝑏) ↔ (deg‘𝑏) = (deg‘𝑏))) |
| 18 | | fveq1 6880 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑏 → (𝑝‘𝐴) = (𝑏‘𝐴)) |
| 19 | 18 | eqeq1d 2738 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑏 → ((𝑝‘𝐴) = 0 ↔ (𝑏‘𝐴) = 0)) |
| 20 | 17, 19 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑏 → (((deg‘𝑝) = (deg‘𝑏) ∧ (𝑝‘𝐴) = 0) ↔ ((deg‘𝑏) = (deg‘𝑏) ∧ (𝑏‘𝐴) = 0))) |
| 21 | 16, 20 | rspc2ev 3619 |
. . . . . . . . 9
⊢
(((deg‘𝑏)
∈ ℕ ∧ 𝑏
∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧
((deg‘𝑏) =
(deg‘𝑏) ∧ (𝑏‘𝐴) = 0)) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖
{0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0)) |
| 22 | 11, 12, 14, 21 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑏 ∈ ((Poly‘ℚ)
∖ {0𝑝}) ∧ (𝑏‘𝐴) = 0) ∧ 𝐴 ∈ ℂ) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ)
∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0)) |
| 23 | 22 | ex 412 |
. . . . . . 7
⊢ ((𝑏 ∈ ((Poly‘ℚ)
∖ {0𝑝}) ∧ (𝑏‘𝐴) = 0) → (𝐴 ∈ ℂ → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ)
∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0))) |
| 24 | 23 | rexlimiva 3134 |
. . . . . 6
⊢
(∃𝑏 ∈
((Poly‘ℚ) ∖ {0𝑝})(𝑏‘𝐴) = 0 → (𝐴 ∈ ℂ → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ)
∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0))) |
| 25 | 24 | impcom 407 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
∃𝑏 ∈
((Poly‘ℚ) ∖ {0𝑝})(𝑏‘𝐴) = 0) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖
{0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0)) |
| 26 | | elqaa 26287 |
. . . . 5
⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧
∃𝑏 ∈
((Poly‘ℚ) ∖ {0𝑝})(𝑏‘𝐴) = 0)) |
| 27 | | rabn0 4369 |
. . . . 5
⊢ ({𝑎 ∈ ℕ ∣
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0)} ≠ ∅ ↔ ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ)
∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0)) |
| 28 | 25, 26, 27 | 3imtr4i 292 |
. . . 4
⊢ (𝐴 ∈ 𝔸 → {𝑎 ∈ ℕ ∣
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0)} ≠ ∅) |
| 29 | | infssuzcl 12953 |
. . . 4
⊢ (({𝑎 ∈ ℕ ∣
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0)} ⊆
(ℤ≥‘1) ∧ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ)
∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0)} ≠ ∅) → inf({𝑎 ∈ ℕ ∣
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0)}, ℝ, < ) ∈ {𝑎 ∈ ℕ ∣
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0)}) |
| 30 | 4, 28, 29 | sylancr 587 |
. . 3
⊢ (𝐴 ∈ 𝔸 →
inf({𝑎 ∈ ℕ
∣ ∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0)}, ℝ, < ) ∈ {𝑎 ∈ ℕ ∣
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0)}) |
| 31 | 1, 30 | eqeltrd 2835 |
. 2
⊢ (𝐴 ∈ 𝔸 →
(degAA‘𝐴)
∈ {𝑎 ∈ ℕ
∣ ∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0)}) |
| 32 | | eqeq2 2748 |
. . . . 5
⊢ (𝑎 = (degAA‘𝐴) → ((deg‘𝑝) = 𝑎 ↔ (deg‘𝑝) = (degAA‘𝐴))) |
| 33 | 32 | anbi1d 631 |
. . . 4
⊢ (𝑎 = (degAA‘𝐴) → (((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0) ↔ ((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0))) |
| 34 | 33 | rexbidv 3165 |
. . 3
⊢ (𝑎 = (degAA‘𝐴) → (∃𝑝 ∈ ((Poly‘ℚ)
∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0) ↔ ∃𝑝 ∈ ((Poly‘ℚ) ∖
{0𝑝})((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0))) |
| 35 | 34 | elrab 3676 |
. 2
⊢
((degAA‘𝐴) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ)
∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝‘𝐴) = 0)} ↔
((degAA‘𝐴)
∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖
{0𝑝})((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0))) |
| 36 | 31, 35 | sylib 218 |
1
⊢ (𝐴 ∈ 𝔸 →
((degAA‘𝐴)
∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖
{0𝑝})((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0))) |