Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraalem Structured version   Visualization version   GIF version

Theorem dgraalem 43134
Description: Properties of the degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.)
Assertion
Ref Expression
dgraalem (𝐴 ∈ 𝔸 → ((degAA𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
Distinct variable group:   𝐴,𝑝

Proof of Theorem dgraalem
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgraaval 43133 . . 3 (𝐴 ∈ 𝔸 → (degAA𝐴) = inf({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)}, ℝ, < ))
2 ssrab2 4043 . . . . 5 {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ⊆ ℕ
3 nnuz 12836 . . . . 5 ℕ = (ℤ‘1)
42, 3sseqtri 3995 . . . 4 {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ⊆ (ℤ‘1)
5 eldifsn 4750 . . . . . . . . . . . 12 (𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
65biimpi 216 . . . . . . . . . . 11 (𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) → (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
76ad2antrr 726 . . . . . . . . . 10 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
8 simpr 484 . . . . . . . . . 10 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
9 simplr 768 . . . . . . . . . 10 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (𝑏𝐴) = 0)
10 dgrnznn 26152 . . . . . . . . . 10 (((𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑏𝐴) = 0)) → (deg‘𝑏) ∈ ℕ)
117, 8, 9, 10syl12anc 836 . . . . . . . . 9 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (deg‘𝑏) ∈ ℕ)
12 simpll 766 . . . . . . . . 9 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → 𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
13 eqid 2729 . . . . . . . . . 10 (deg‘𝑏) = (deg‘𝑏)
149, 13jctil 519 . . . . . . . . 9 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → ((deg‘𝑏) = (deg‘𝑏) ∧ (𝑏𝐴) = 0))
15 eqeq2 2741 . . . . . . . . . . 11 (𝑎 = (deg‘𝑏) → ((deg‘𝑝) = 𝑎 ↔ (deg‘𝑝) = (deg‘𝑏)))
1615anbi1d 631 . . . . . . . . . 10 (𝑎 = (deg‘𝑏) → (((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0) ↔ ((deg‘𝑝) = (deg‘𝑏) ∧ (𝑝𝐴) = 0)))
17 fveqeq2 6867 . . . . . . . . . . 11 (𝑝 = 𝑏 → ((deg‘𝑝) = (deg‘𝑏) ↔ (deg‘𝑏) = (deg‘𝑏)))
18 fveq1 6857 . . . . . . . . . . . 12 (𝑝 = 𝑏 → (𝑝𝐴) = (𝑏𝐴))
1918eqeq1d 2731 . . . . . . . . . . 11 (𝑝 = 𝑏 → ((𝑝𝐴) = 0 ↔ (𝑏𝐴) = 0))
2017, 19anbi12d 632 . . . . . . . . . 10 (𝑝 = 𝑏 → (((deg‘𝑝) = (deg‘𝑏) ∧ (𝑝𝐴) = 0) ↔ ((deg‘𝑏) = (deg‘𝑏) ∧ (𝑏𝐴) = 0)))
2116, 20rspc2ev 3601 . . . . . . . . 9 (((deg‘𝑏) ∈ ℕ ∧ 𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ ((deg‘𝑏) = (deg‘𝑏) ∧ (𝑏𝐴) = 0)) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
2211, 12, 14, 21syl3anc 1373 . . . . . . . 8 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
2322ex 412 . . . . . . 7 ((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) → (𝐴 ∈ ℂ → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)))
2423rexlimiva 3126 . . . . . 6 (∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝐴) = 0 → (𝐴 ∈ ℂ → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)))
2524impcom 407 . . . . 5 ((𝐴 ∈ ℂ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝐴) = 0) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
26 elqaa 26230 . . . . 5 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝐴) = 0))
27 rabn0 4352 . . . . 5 ({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ≠ ∅ ↔ ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
2825, 26, 273imtr4i 292 . . . 4 (𝐴 ∈ 𝔸 → {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ≠ ∅)
29 infssuzcl 12891 . . . 4 (({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ⊆ (ℤ‘1) ∧ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ≠ ∅) → inf({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)}, ℝ, < ) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)})
304, 28, 29sylancr 587 . . 3 (𝐴 ∈ 𝔸 → inf({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)}, ℝ, < ) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)})
311, 30eqeltrd 2828 . 2 (𝐴 ∈ 𝔸 → (degAA𝐴) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)})
32 eqeq2 2741 . . . . 5 (𝑎 = (degAA𝐴) → ((deg‘𝑝) = 𝑎 ↔ (deg‘𝑝) = (degAA𝐴)))
3332anbi1d 631 . . . 4 (𝑎 = (degAA𝐴) → (((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0) ↔ ((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
3433rexbidv 3157 . . 3 (𝑎 = (degAA𝐴) → (∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0) ↔ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
3534elrab 3659 . 2 ((degAA𝐴) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ↔ ((degAA𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
3631, 35sylib 218 1 (𝐴 ∈ 𝔸 → ((degAA𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  cdif 3911  wss 3914  c0 4296  {csn 4589  cfv 6511  infcinf 9392  cc 11066  cr 11067  0cc0 11068  1c1 11069   < clt 11208  cn 12186  cuz 12793  cq 12907  0𝑝c0p 25570  Polycply 26089  degcdgr 26092  𝔸caa 26222  degAAcdgraa 43129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-0p 25571  df-ply 26093  df-coe 26095  df-dgr 26096  df-aa 26223  df-dgraa 43131
This theorem is referenced by:  dgraacl  43135  mpaaeu  43139
  Copyright terms: Public domain W3C validator