Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraalem Structured version   Visualization version   GIF version

Theorem dgraalem 43134
Description: Properties of the degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.)
Assertion
Ref Expression
dgraalem (𝐴 ∈ 𝔸 → ((degAA𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
Distinct variable group:   𝐴,𝑝

Proof of Theorem dgraalem
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgraaval 43133 . . 3 (𝐴 ∈ 𝔸 → (degAA𝐴) = inf({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)}, ℝ, < ))
2 ssrab2 4090 . . . . 5 {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ⊆ ℕ
3 nnuz 12919 . . . . 5 ℕ = (ℤ‘1)
42, 3sseqtri 4032 . . . 4 {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ⊆ (ℤ‘1)
5 eldifsn 4791 . . . . . . . . . . . 12 (𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
65biimpi 216 . . . . . . . . . . 11 (𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) → (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
76ad2antrr 726 . . . . . . . . . 10 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
8 simpr 484 . . . . . . . . . 10 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
9 simplr 769 . . . . . . . . . 10 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (𝑏𝐴) = 0)
10 dgrnznn 26301 . . . . . . . . . 10 (((𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑏𝐴) = 0)) → (deg‘𝑏) ∈ ℕ)
117, 8, 9, 10syl12anc 837 . . . . . . . . 9 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (deg‘𝑏) ∈ ℕ)
12 simpll 767 . . . . . . . . 9 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → 𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
13 eqid 2735 . . . . . . . . . 10 (deg‘𝑏) = (deg‘𝑏)
149, 13jctil 519 . . . . . . . . 9 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → ((deg‘𝑏) = (deg‘𝑏) ∧ (𝑏𝐴) = 0))
15 eqeq2 2747 . . . . . . . . . . 11 (𝑎 = (deg‘𝑏) → ((deg‘𝑝) = 𝑎 ↔ (deg‘𝑝) = (deg‘𝑏)))
1615anbi1d 631 . . . . . . . . . 10 (𝑎 = (deg‘𝑏) → (((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0) ↔ ((deg‘𝑝) = (deg‘𝑏) ∧ (𝑝𝐴) = 0)))
17 fveqeq2 6916 . . . . . . . . . . 11 (𝑝 = 𝑏 → ((deg‘𝑝) = (deg‘𝑏) ↔ (deg‘𝑏) = (deg‘𝑏)))
18 fveq1 6906 . . . . . . . . . . . 12 (𝑝 = 𝑏 → (𝑝𝐴) = (𝑏𝐴))
1918eqeq1d 2737 . . . . . . . . . . 11 (𝑝 = 𝑏 → ((𝑝𝐴) = 0 ↔ (𝑏𝐴) = 0))
2017, 19anbi12d 632 . . . . . . . . . 10 (𝑝 = 𝑏 → (((deg‘𝑝) = (deg‘𝑏) ∧ (𝑝𝐴) = 0) ↔ ((deg‘𝑏) = (deg‘𝑏) ∧ (𝑏𝐴) = 0)))
2116, 20rspc2ev 3635 . . . . . . . . 9 (((deg‘𝑏) ∈ ℕ ∧ 𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ ((deg‘𝑏) = (deg‘𝑏) ∧ (𝑏𝐴) = 0)) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
2211, 12, 14, 21syl3anc 1370 . . . . . . . 8 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
2322ex 412 . . . . . . 7 ((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) → (𝐴 ∈ ℂ → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)))
2423rexlimiva 3145 . . . . . 6 (∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝐴) = 0 → (𝐴 ∈ ℂ → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)))
2524impcom 407 . . . . 5 ((𝐴 ∈ ℂ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝐴) = 0) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
26 elqaa 26379 . . . . 5 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝐴) = 0))
27 rabn0 4395 . . . . 5 ({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ≠ ∅ ↔ ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
2825, 26, 273imtr4i 292 . . . 4 (𝐴 ∈ 𝔸 → {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ≠ ∅)
29 infssuzcl 12972 . . . 4 (({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ⊆ (ℤ‘1) ∧ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ≠ ∅) → inf({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)}, ℝ, < ) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)})
304, 28, 29sylancr 587 . . 3 (𝐴 ∈ 𝔸 → inf({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)}, ℝ, < ) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)})
311, 30eqeltrd 2839 . 2 (𝐴 ∈ 𝔸 → (degAA𝐴) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)})
32 eqeq2 2747 . . . . 5 (𝑎 = (degAA𝐴) → ((deg‘𝑝) = 𝑎 ↔ (deg‘𝑝) = (degAA𝐴)))
3332anbi1d 631 . . . 4 (𝑎 = (degAA𝐴) → (((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0) ↔ ((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
3433rexbidv 3177 . . 3 (𝑎 = (degAA𝐴) → (∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0) ↔ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
3534elrab 3695 . 2 ((degAA𝐴) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ↔ ((degAA𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
3631, 35sylib 218 1 (𝐴 ∈ 𝔸 → ((degAA𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wrex 3068  {crab 3433  cdif 3960  wss 3963  c0 4339  {csn 4631  cfv 6563  infcinf 9479  cc 11151  cr 11152  0cc0 11153  1c1 11154   < clt 11293  cn 12264  cuz 12876  cq 12988  0𝑝c0p 25718  Polycply 26238  degcdgr 26241  𝔸caa 26371  degAAcdgraa 43129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-0p 25719  df-ply 26242  df-coe 26244  df-dgr 26245  df-aa 26372  df-dgraa 43131
This theorem is referenced by:  dgraacl  43135  mpaaeu  43139
  Copyright terms: Public domain W3C validator