Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraalem Structured version   Visualization version   GIF version

Theorem dgraalem 42600
Description: Properties of the degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.)
Assertion
Ref Expression
dgraalem (𝐴 ∈ 𝔸 → ((degAA𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
Distinct variable group:   𝐴,𝑝

Proof of Theorem dgraalem
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgraaval 42599 . . 3 (𝐴 ∈ 𝔸 → (degAA𝐴) = inf({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)}, ℝ, < ))
2 ssrab2 4077 . . . . 5 {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ⊆ ℕ
3 nnuz 12903 . . . . 5 ℕ = (ℤ‘1)
42, 3sseqtri 4018 . . . 4 {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ⊆ (ℤ‘1)
5 eldifsn 4795 . . . . . . . . . . . 12 (𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
65biimpi 215 . . . . . . . . . . 11 (𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) → (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
76ad2antrr 724 . . . . . . . . . 10 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
8 simpr 483 . . . . . . . . . 10 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
9 simplr 767 . . . . . . . . . 10 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (𝑏𝐴) = 0)
10 dgrnznn 26201 . . . . . . . . . 10 (((𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑏𝐴) = 0)) → (deg‘𝑏) ∈ ℕ)
117, 8, 9, 10syl12anc 835 . . . . . . . . 9 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (deg‘𝑏) ∈ ℕ)
12 simpll 765 . . . . . . . . 9 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → 𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
13 eqid 2728 . . . . . . . . . 10 (deg‘𝑏) = (deg‘𝑏)
149, 13jctil 518 . . . . . . . . 9 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → ((deg‘𝑏) = (deg‘𝑏) ∧ (𝑏𝐴) = 0))
15 eqeq2 2740 . . . . . . . . . . 11 (𝑎 = (deg‘𝑏) → ((deg‘𝑝) = 𝑎 ↔ (deg‘𝑝) = (deg‘𝑏)))
1615anbi1d 629 . . . . . . . . . 10 (𝑎 = (deg‘𝑏) → (((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0) ↔ ((deg‘𝑝) = (deg‘𝑏) ∧ (𝑝𝐴) = 0)))
17 fveqeq2 6911 . . . . . . . . . . 11 (𝑝 = 𝑏 → ((deg‘𝑝) = (deg‘𝑏) ↔ (deg‘𝑏) = (deg‘𝑏)))
18 fveq1 6901 . . . . . . . . . . . 12 (𝑝 = 𝑏 → (𝑝𝐴) = (𝑏𝐴))
1918eqeq1d 2730 . . . . . . . . . . 11 (𝑝 = 𝑏 → ((𝑝𝐴) = 0 ↔ (𝑏𝐴) = 0))
2017, 19anbi12d 630 . . . . . . . . . 10 (𝑝 = 𝑏 → (((deg‘𝑝) = (deg‘𝑏) ∧ (𝑝𝐴) = 0) ↔ ((deg‘𝑏) = (deg‘𝑏) ∧ (𝑏𝐴) = 0)))
2116, 20rspc2ev 3624 . . . . . . . . 9 (((deg‘𝑏) ∈ ℕ ∧ 𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ ((deg‘𝑏) = (deg‘𝑏) ∧ (𝑏𝐴) = 0)) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
2211, 12, 14, 21syl3anc 1368 . . . . . . . 8 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
2322ex 411 . . . . . . 7 ((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) → (𝐴 ∈ ℂ → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)))
2423rexlimiva 3144 . . . . . 6 (∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝐴) = 0 → (𝐴 ∈ ℂ → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)))
2524impcom 406 . . . . 5 ((𝐴 ∈ ℂ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝐴) = 0) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
26 elqaa 26277 . . . . 5 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝐴) = 0))
27 rabn0 4389 . . . . 5 ({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ≠ ∅ ↔ ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
2825, 26, 273imtr4i 291 . . . 4 (𝐴 ∈ 𝔸 → {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ≠ ∅)
29 infssuzcl 12954 . . . 4 (({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ⊆ (ℤ‘1) ∧ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ≠ ∅) → inf({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)}, ℝ, < ) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)})
304, 28, 29sylancr 585 . . 3 (𝐴 ∈ 𝔸 → inf({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)}, ℝ, < ) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)})
311, 30eqeltrd 2829 . 2 (𝐴 ∈ 𝔸 → (degAA𝐴) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)})
32 eqeq2 2740 . . . . 5 (𝑎 = (degAA𝐴) → ((deg‘𝑝) = 𝑎 ↔ (deg‘𝑝) = (degAA𝐴)))
3332anbi1d 629 . . . 4 (𝑎 = (degAA𝐴) → (((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0) ↔ ((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
3433rexbidv 3176 . . 3 (𝑎 = (degAA𝐴) → (∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0) ↔ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
3534elrab 3684 . 2 ((degAA𝐴) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ↔ ((degAA𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
3631, 35sylib 217 1 (𝐴 ∈ 𝔸 → ((degAA𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2937  wrex 3067  {crab 3430  cdif 3946  wss 3949  c0 4326  {csn 4632  cfv 6553  infcinf 9472  cc 11144  cr 11145  0cc0 11146  1c1 11147   < clt 11286  cn 12250  cuz 12860  cq 12970  0𝑝c0p 25618  Polycply 26138  degcdgr 26141  𝔸caa 26269  degAAcdgraa 42595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-q 12971  df-rp 13015  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-hash 14330  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-clim 15472  df-rlim 15473  df-sum 15673  df-0p 25619  df-ply 26142  df-coe 26144  df-dgr 26145  df-aa 26270  df-dgraa 42597
This theorem is referenced by:  dgraacl  42601  mpaaeu  42605
  Copyright terms: Public domain W3C validator