Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraalem Structured version   Visualization version   GIF version

Theorem dgraalem 43102
Description: Properties of the degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.)
Assertion
Ref Expression
dgraalem (𝐴 ∈ 𝔸 → ((degAA𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
Distinct variable group:   𝐴,𝑝

Proof of Theorem dgraalem
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgraaval 43101 . . 3 (𝐴 ∈ 𝔸 → (degAA𝐴) = inf({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)}, ℝ, < ))
2 ssrab2 4103 . . . . 5 {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ⊆ ℕ
3 nnuz 12946 . . . . 5 ℕ = (ℤ‘1)
42, 3sseqtri 4045 . . . 4 {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ⊆ (ℤ‘1)
5 eldifsn 4811 . . . . . . . . . . . 12 (𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
65biimpi 216 . . . . . . . . . . 11 (𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) → (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
76ad2antrr 725 . . . . . . . . . 10 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
8 simpr 484 . . . . . . . . . 10 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
9 simplr 768 . . . . . . . . . 10 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (𝑏𝐴) = 0)
10 dgrnznn 26306 . . . . . . . . . 10 (((𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑏𝐴) = 0)) → (deg‘𝑏) ∈ ℕ)
117, 8, 9, 10syl12anc 836 . . . . . . . . 9 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (deg‘𝑏) ∈ ℕ)
12 simpll 766 . . . . . . . . 9 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → 𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
13 eqid 2740 . . . . . . . . . 10 (deg‘𝑏) = (deg‘𝑏)
149, 13jctil 519 . . . . . . . . 9 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → ((deg‘𝑏) = (deg‘𝑏) ∧ (𝑏𝐴) = 0))
15 eqeq2 2752 . . . . . . . . . . 11 (𝑎 = (deg‘𝑏) → ((deg‘𝑝) = 𝑎 ↔ (deg‘𝑝) = (deg‘𝑏)))
1615anbi1d 630 . . . . . . . . . 10 (𝑎 = (deg‘𝑏) → (((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0) ↔ ((deg‘𝑝) = (deg‘𝑏) ∧ (𝑝𝐴) = 0)))
17 fveqeq2 6929 . . . . . . . . . . 11 (𝑝 = 𝑏 → ((deg‘𝑝) = (deg‘𝑏) ↔ (deg‘𝑏) = (deg‘𝑏)))
18 fveq1 6919 . . . . . . . . . . . 12 (𝑝 = 𝑏 → (𝑝𝐴) = (𝑏𝐴))
1918eqeq1d 2742 . . . . . . . . . . 11 (𝑝 = 𝑏 → ((𝑝𝐴) = 0 ↔ (𝑏𝐴) = 0))
2017, 19anbi12d 631 . . . . . . . . . 10 (𝑝 = 𝑏 → (((deg‘𝑝) = (deg‘𝑏) ∧ (𝑝𝐴) = 0) ↔ ((deg‘𝑏) = (deg‘𝑏) ∧ (𝑏𝐴) = 0)))
2116, 20rspc2ev 3648 . . . . . . . . 9 (((deg‘𝑏) ∈ ℕ ∧ 𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ ((deg‘𝑏) = (deg‘𝑏) ∧ (𝑏𝐴) = 0)) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
2211, 12, 14, 21syl3anc 1371 . . . . . . . 8 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
2322ex 412 . . . . . . 7 ((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) → (𝐴 ∈ ℂ → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)))
2423rexlimiva 3153 . . . . . 6 (∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝐴) = 0 → (𝐴 ∈ ℂ → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)))
2524impcom 407 . . . . 5 ((𝐴 ∈ ℂ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝐴) = 0) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
26 elqaa 26382 . . . . 5 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝐴) = 0))
27 rabn0 4412 . . . . 5 ({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ≠ ∅ ↔ ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
2825, 26, 273imtr4i 292 . . . 4 (𝐴 ∈ 𝔸 → {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ≠ ∅)
29 infssuzcl 12997 . . . 4 (({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ⊆ (ℤ‘1) ∧ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ≠ ∅) → inf({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)}, ℝ, < ) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)})
304, 28, 29sylancr 586 . . 3 (𝐴 ∈ 𝔸 → inf({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)}, ℝ, < ) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)})
311, 30eqeltrd 2844 . 2 (𝐴 ∈ 𝔸 → (degAA𝐴) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)})
32 eqeq2 2752 . . . . 5 (𝑎 = (degAA𝐴) → ((deg‘𝑝) = 𝑎 ↔ (deg‘𝑝) = (degAA𝐴)))
3332anbi1d 630 . . . 4 (𝑎 = (degAA𝐴) → (((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0) ↔ ((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
3433rexbidv 3185 . . 3 (𝑎 = (degAA𝐴) → (∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0) ↔ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
3534elrab 3708 . 2 ((degAA𝐴) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ↔ ((degAA𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
3631, 35sylib 218 1 (𝐴 ∈ 𝔸 → ((degAA𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  {crab 3443  cdif 3973  wss 3976  c0 4352  {csn 4648  cfv 6573  infcinf 9510  cc 11182  cr 11183  0cc0 11184  1c1 11185   < clt 11324  cn 12293  cuz 12903  cq 13013  0𝑝c0p 25723  Polycply 26243  degcdgr 26246  𝔸caa 26374  degAAcdgraa 43097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-0p 25724  df-ply 26247  df-coe 26249  df-dgr 26250  df-aa 26375  df-dgraa 43099
This theorem is referenced by:  dgraacl  43103  mpaaeu  43107
  Copyright terms: Public domain W3C validator