Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraalem Structured version   Visualization version   GIF version

Theorem dgraalem 40508
Description: Properties of the degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.)
Assertion
Ref Expression
dgraalem (𝐴 ∈ 𝔸 → ((degAA𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
Distinct variable group:   𝐴,𝑝

Proof of Theorem dgraalem
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgraaval 40507 . . 3 (𝐴 ∈ 𝔸 → (degAA𝐴) = inf({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)}, ℝ, < ))
2 ssrab2 3987 . . . . 5 {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ⊆ ℕ
3 nnuz 12335 . . . . 5 ℕ = (ℤ‘1)
42, 3sseqtri 3931 . . . 4 {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ⊆ (ℤ‘1)
5 eldifsn 4681 . . . . . . . . . . . 12 (𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
65biimpi 219 . . . . . . . . . . 11 (𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) → (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
76ad2antrr 725 . . . . . . . . . 10 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
8 simpr 488 . . . . . . . . . 10 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
9 simplr 768 . . . . . . . . . 10 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (𝑏𝐴) = 0)
10 dgrnznn 24958 . . . . . . . . . 10 (((𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑏𝐴) = 0)) → (deg‘𝑏) ∈ ℕ)
117, 8, 9, 10syl12anc 835 . . . . . . . . 9 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → (deg‘𝑏) ∈ ℕ)
12 simpll 766 . . . . . . . . 9 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → 𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
13 eqid 2759 . . . . . . . . . 10 (deg‘𝑏) = (deg‘𝑏)
149, 13jctil 523 . . . . . . . . 9 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → ((deg‘𝑏) = (deg‘𝑏) ∧ (𝑏𝐴) = 0))
15 eqeq2 2771 . . . . . . . . . . 11 (𝑎 = (deg‘𝑏) → ((deg‘𝑝) = 𝑎 ↔ (deg‘𝑝) = (deg‘𝑏)))
1615anbi1d 632 . . . . . . . . . 10 (𝑎 = (deg‘𝑏) → (((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0) ↔ ((deg‘𝑝) = (deg‘𝑏) ∧ (𝑝𝐴) = 0)))
17 fveqeq2 6673 . . . . . . . . . . 11 (𝑝 = 𝑏 → ((deg‘𝑝) = (deg‘𝑏) ↔ (deg‘𝑏) = (deg‘𝑏)))
18 fveq1 6663 . . . . . . . . . . . 12 (𝑝 = 𝑏 → (𝑝𝐴) = (𝑏𝐴))
1918eqeq1d 2761 . . . . . . . . . . 11 (𝑝 = 𝑏 → ((𝑝𝐴) = 0 ↔ (𝑏𝐴) = 0))
2017, 19anbi12d 633 . . . . . . . . . 10 (𝑝 = 𝑏 → (((deg‘𝑝) = (deg‘𝑏) ∧ (𝑝𝐴) = 0) ↔ ((deg‘𝑏) = (deg‘𝑏) ∧ (𝑏𝐴) = 0)))
2116, 20rspc2ev 3556 . . . . . . . . 9 (((deg‘𝑏) ∈ ℕ ∧ 𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ ((deg‘𝑏) = (deg‘𝑏) ∧ (𝑏𝐴) = 0)) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
2211, 12, 14, 21syl3anc 1369 . . . . . . . 8 (((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) ∧ 𝐴 ∈ ℂ) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
2322ex 416 . . . . . . 7 ((𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝐴) = 0) → (𝐴 ∈ ℂ → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)))
2423rexlimiva 3206 . . . . . 6 (∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝐴) = 0 → (𝐴 ∈ ℂ → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)))
2524impcom 411 . . . . 5 ((𝐴 ∈ ℂ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝐴) = 0) → ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
26 elqaa 25032 . . . . 5 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝐴) = 0))
27 rabn0 4285 . . . . 5 ({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ≠ ∅ ↔ ∃𝑎 ∈ ℕ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0))
2825, 26, 273imtr4i 295 . . . 4 (𝐴 ∈ 𝔸 → {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ≠ ∅)
29 infssuzcl 12386 . . . 4 (({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ⊆ (ℤ‘1) ∧ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ≠ ∅) → inf({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)}, ℝ, < ) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)})
304, 28, 29sylancr 590 . . 3 (𝐴 ∈ 𝔸 → inf({𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)}, ℝ, < ) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)})
311, 30eqeltrd 2853 . 2 (𝐴 ∈ 𝔸 → (degAA𝐴) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)})
32 eqeq2 2771 . . . . 5 (𝑎 = (degAA𝐴) → ((deg‘𝑝) = 𝑎 ↔ (deg‘𝑝) = (degAA𝐴)))
3332anbi1d 632 . . . 4 (𝑎 = (degAA𝐴) → (((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0) ↔ ((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
3433rexbidv 3222 . . 3 (𝑎 = (degAA𝐴) → (∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0) ↔ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
3534elrab 3605 . 2 ((degAA𝐴) ∈ {𝑎 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑎 ∧ (𝑝𝐴) = 0)} ↔ ((degAA𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
3631, 35sylib 221 1 (𝐴 ∈ 𝔸 → ((degAA𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1539  wcel 2112  wne 2952  wrex 3072  {crab 3075  cdif 3858  wss 3861  c0 4228  {csn 4526  cfv 6341  infcinf 8952  cc 10587  cr 10588  0cc0 10589  1c1 10590   < clt 10727  cn 11688  cuz 12296  cq 12402  0𝑝c0p 24384  Polycply 24895  degcdgr 24898  𝔸caa 25024  degAAcdgraa 40503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-inf2 9151  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-pre-sup 10667  ax-addf 10668
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-of 7412  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-er 8306  df-map 8425  df-pm 8426  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-sup 8953  df-inf 8954  df-oi 9021  df-card 9415  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-div 11350  df-nn 11689  df-2 11751  df-3 11752  df-n0 11949  df-z 12035  df-uz 12297  df-q 12403  df-rp 12445  df-fz 12954  df-fzo 13097  df-fl 13225  df-mod 13301  df-seq 13433  df-exp 13494  df-hash 13755  df-cj 14520  df-re 14521  df-im 14522  df-sqrt 14656  df-abs 14657  df-clim 14907  df-rlim 14908  df-sum 15105  df-0p 24385  df-ply 24899  df-coe 24901  df-dgr 24902  df-aa 25025  df-dgraa 40505
This theorem is referenced by:  dgraacl  40509  mpaaeu  40513
  Copyright terms: Public domain W3C validator