| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > djhexmid | Structured version Visualization version GIF version | ||
| Description: Excluded middle property of DVecH vector space closed subspace join. (Contributed by NM, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| djhexmid.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| djhexmid.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| djhexmid.v | ⊢ 𝑉 = (Base‘𝑈) |
| djhexmid.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| djhexmid.j | ⊢ ∨ = ((joinH‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| djhexmid | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑋 ∨ ( ⊥ ‘𝑋)) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simpr 484 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝑋 ⊆ 𝑉) | |
| 3 | djhexmid.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | djhexmid.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | djhexmid.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 6 | djhexmid.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 7 | 3, 4, 5, 6 | dochssv 41334 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ⊆ 𝑉) |
| 8 | djhexmid.j | . . . 4 ⊢ ∨ = ((joinH‘𝐾)‘𝑊) | |
| 9 | 3, 4, 5, 6, 8 | djhval 41377 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑉 ∧ ( ⊥ ‘𝑋) ⊆ 𝑉)) → (𝑋 ∨ ( ⊥ ‘𝑋)) = ( ⊥ ‘(( ⊥ ‘𝑋) ∩ ( ⊥ ‘( ⊥ ‘𝑋))))) |
| 10 | 1, 2, 7, 9 | syl12anc 836 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑋 ∨ ( ⊥ ‘𝑋)) = ( ⊥ ‘(( ⊥ ‘𝑋) ∩ ( ⊥ ‘( ⊥ ‘𝑋))))) |
| 11 | eqid 2729 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 12 | 3, 4, 5, 11, 6 | dochlss 41333 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ∈ (LSubSp‘𝑈)) |
| 13 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 14 | 3, 4, 11, 13, 6 | dochnoncon 41370 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ∈ (LSubSp‘𝑈)) → (( ⊥ ‘𝑋) ∩ ( ⊥ ‘( ⊥ ‘𝑋))) = {(0g‘𝑈)}) |
| 15 | 12, 14 | syldan 591 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (( ⊥ ‘𝑋) ∩ ( ⊥ ‘( ⊥ ‘𝑋))) = {(0g‘𝑈)}) |
| 16 | 3, 4, 6, 5, 13 | doch1 41338 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘𝑉) = {(0g‘𝑈)}) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑉) = {(0g‘𝑈)}) |
| 18 | 15, 17 | eqtr4d 2767 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (( ⊥ ‘𝑋) ∩ ( ⊥ ‘( ⊥ ‘𝑋))) = ( ⊥ ‘𝑉)) |
| 19 | 18 | fveq2d 6830 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘(( ⊥ ‘𝑋) ∩ ( ⊥ ‘( ⊥ ‘𝑋)))) = ( ⊥ ‘( ⊥ ‘𝑉))) |
| 20 | eqid 2729 | . . . . 5 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
| 21 | 3, 20, 4, 5 | dih1rn 41266 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 22 | 21 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 23 | 3, 20, 6 | dochoc 41346 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
| 24 | 22, 23 | syldan 591 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
| 25 | 10, 19, 24 | 3eqtrd 2768 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑋 ∨ ( ⊥ ‘𝑋)) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 ⊆ wss 3905 {csn 4579 ran crn 5624 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 0gc0g 17361 LSubSpclss 20852 HLchlt 39328 LHypclh 39963 DVecHcdvh 41057 DIsoHcdih 41207 ocHcoch 41326 joinHcdjh 41373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-riotaBAD 38931 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-undef 8213 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-0g 17363 df-proset 18218 df-poset 18237 df-plt 18252 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-p1 18348 df-lat 18356 df-clat 18423 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cntz 19214 df-lsm 19533 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-drng 20634 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lvec 21025 df-lsatoms 38954 df-oposet 39154 df-ol 39156 df-oml 39157 df-covers 39244 df-ats 39245 df-atl 39276 df-cvlat 39300 df-hlat 39329 df-llines 39477 df-lplanes 39478 df-lvols 39479 df-lines 39480 df-psubsp 39482 df-pmap 39483 df-padd 39775 df-lhyp 39967 df-laut 39968 df-ldil 40083 df-ltrn 40084 df-trl 40138 df-tendo 40734 df-edring 40736 df-disoa 41008 df-dvech 41058 df-dib 41118 df-dic 41152 df-dih 41208 df-doch 41327 df-djh 41374 |
| This theorem is referenced by: dochsatshp 41430 |
| Copyright terms: Public domain | W3C validator |