Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > djhexmid | Structured version Visualization version GIF version |
Description: Excluded middle property of DVecH vector space closed subspace join. (Contributed by NM, 22-Jul-2014.) |
Ref | Expression |
---|---|
djhexmid.h | ⊢ 𝐻 = (LHyp‘𝐾) |
djhexmid.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
djhexmid.v | ⊢ 𝑉 = (Base‘𝑈) |
djhexmid.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
djhexmid.j | ⊢ ∨ = ((joinH‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
djhexmid | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑋 ∨ ( ⊥ ‘𝑋)) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simpr 488 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝑋 ⊆ 𝑉) | |
3 | djhexmid.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | djhexmid.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | djhexmid.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
6 | djhexmid.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
7 | 3, 4, 5, 6 | dochssv 39012 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ⊆ 𝑉) |
8 | djhexmid.j | . . . 4 ⊢ ∨ = ((joinH‘𝐾)‘𝑊) | |
9 | 3, 4, 5, 6, 8 | djhval 39055 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑉 ∧ ( ⊥ ‘𝑋) ⊆ 𝑉)) → (𝑋 ∨ ( ⊥ ‘𝑋)) = ( ⊥ ‘(( ⊥ ‘𝑋) ∩ ( ⊥ ‘( ⊥ ‘𝑋))))) |
10 | 1, 2, 7, 9 | syl12anc 836 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑋 ∨ ( ⊥ ‘𝑋)) = ( ⊥ ‘(( ⊥ ‘𝑋) ∩ ( ⊥ ‘( ⊥ ‘𝑋))))) |
11 | eqid 2738 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
12 | 3, 4, 5, 11, 6 | dochlss 39011 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ∈ (LSubSp‘𝑈)) |
13 | eqid 2738 | . . . . . 6 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
14 | 3, 4, 11, 13, 6 | dochnoncon 39048 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ∈ (LSubSp‘𝑈)) → (( ⊥ ‘𝑋) ∩ ( ⊥ ‘( ⊥ ‘𝑋))) = {(0g‘𝑈)}) |
15 | 12, 14 | syldan 594 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (( ⊥ ‘𝑋) ∩ ( ⊥ ‘( ⊥ ‘𝑋))) = {(0g‘𝑈)}) |
16 | 3, 4, 6, 5, 13 | doch1 39016 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘𝑉) = {(0g‘𝑈)}) |
17 | 16 | adantr 484 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑉) = {(0g‘𝑈)}) |
18 | 15, 17 | eqtr4d 2776 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (( ⊥ ‘𝑋) ∩ ( ⊥ ‘( ⊥ ‘𝑋))) = ( ⊥ ‘𝑉)) |
19 | 18 | fveq2d 6678 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘(( ⊥ ‘𝑋) ∩ ( ⊥ ‘( ⊥ ‘𝑋)))) = ( ⊥ ‘( ⊥ ‘𝑉))) |
20 | eqid 2738 | . . . . 5 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
21 | 3, 20, 4, 5 | dih1rn 38944 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
22 | 21 | adantr 484 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
23 | 3, 20, 6 | dochoc 39024 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
24 | 22, 23 | syldan 594 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
25 | 10, 19, 24 | 3eqtrd 2777 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑋 ∨ ( ⊥ ‘𝑋)) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∩ cin 3842 ⊆ wss 3843 {csn 4516 ran crn 5526 ‘cfv 6339 (class class class)co 7170 Basecbs 16586 0gc0g 16816 LSubSpclss 19822 HLchlt 37007 LHypclh 37641 DVecHcdvh 38735 DIsoHcdih 38885 ocHcoch 39004 joinHcdjh 39051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-riotaBAD 36610 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-tpos 7921 df-undef 7968 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-n0 11977 df-z 12063 df-uz 12325 df-fz 12982 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-sca 16684 df-vsca 16685 df-0g 16818 df-proset 17654 df-poset 17672 df-plt 17684 df-lub 17700 df-glb 17701 df-join 17702 df-meet 17703 df-p0 17765 df-p1 17766 df-lat 17772 df-clat 17834 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-submnd 18073 df-grp 18222 df-minusg 18223 df-sbg 18224 df-subg 18394 df-cntz 18565 df-lsm 18879 df-cmn 19026 df-abl 19027 df-mgp 19359 df-ur 19371 df-ring 19418 df-oppr 19495 df-dvdsr 19513 df-unit 19514 df-invr 19544 df-dvr 19555 df-drng 19623 df-lmod 19755 df-lss 19823 df-lsp 19863 df-lvec 19994 df-lsatoms 36633 df-oposet 36833 df-ol 36835 df-oml 36836 df-covers 36923 df-ats 36924 df-atl 36955 df-cvlat 36979 df-hlat 37008 df-llines 37155 df-lplanes 37156 df-lvols 37157 df-lines 37158 df-psubsp 37160 df-pmap 37161 df-padd 37453 df-lhyp 37645 df-laut 37646 df-ldil 37761 df-ltrn 37762 df-trl 37816 df-tendo 38412 df-edring 38414 df-disoa 38686 df-dvech 38736 df-dib 38796 df-dic 38830 df-dih 38886 df-doch 39005 df-djh 39052 |
This theorem is referenced by: dochsatshp 39108 |
Copyright terms: Public domain | W3C validator |