Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djhcl Structured version   Visualization version   GIF version

Theorem djhcl 38693
 Description: Closure of subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
Hypotheses
Ref Expression
djhcl.h 𝐻 = (LHyp‘𝐾)
djhcl.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
djhcl.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
djhcl.v 𝑉 = (Base‘𝑈)
djhcl.j = ((joinH‘𝐾)‘𝑊)
Assertion
Ref Expression
djhcl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) ∈ ran 𝐼)

Proof of Theorem djhcl
StepHypRef Expression
1 djhcl.h . . 3 𝐻 = (LHyp‘𝐾)
2 djhcl.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 djhcl.v . . 3 𝑉 = (Base‘𝑈)
4 eqid 2798 . . 3 ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊)
5 djhcl.j . . 3 = ((joinH‘𝐾)‘𝑊)
61, 2, 3, 4, 5djhval 38691 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) = (((ocH‘𝐾)‘𝑊)‘((((ocH‘𝐾)‘𝑊)‘𝑋) ∩ (((ocH‘𝐾)‘𝑊)‘𝑌))))
7 inss1 4155 . . . 4 ((((ocH‘𝐾)‘𝑊)‘𝑋) ∩ (((ocH‘𝐾)‘𝑊)‘𝑌)) ⊆ (((ocH‘𝐾)‘𝑊)‘𝑋)
8 djhcl.i . . . . . . 7 𝐼 = ((DIsoH‘𝐾)‘𝑊)
91, 8, 2, 3, 4dochcl 38646 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((ocH‘𝐾)‘𝑊)‘𝑋) ∈ ran 𝐼)
109adantrr 716 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (((ocH‘𝐾)‘𝑊)‘𝑋) ∈ ran 𝐼)
111, 2, 8, 3dihrnss 38571 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((ocH‘𝐾)‘𝑊)‘𝑋) ∈ ran 𝐼) → (((ocH‘𝐾)‘𝑊)‘𝑋) ⊆ 𝑉)
1210, 11syldan 594 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (((ocH‘𝐾)‘𝑊)‘𝑋) ⊆ 𝑉)
137, 12sstrid 3926 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → ((((ocH‘𝐾)‘𝑊)‘𝑋) ∩ (((ocH‘𝐾)‘𝑊)‘𝑌)) ⊆ 𝑉)
141, 8, 2, 3, 4dochcl 38646 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((((ocH‘𝐾)‘𝑊)‘𝑋) ∩ (((ocH‘𝐾)‘𝑊)‘𝑌)) ⊆ 𝑉) → (((ocH‘𝐾)‘𝑊)‘((((ocH‘𝐾)‘𝑊)‘𝑋) ∩ (((ocH‘𝐾)‘𝑊)‘𝑌))) ∈ ran 𝐼)
1513, 14syldan 594 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (((ocH‘𝐾)‘𝑊)‘((((ocH‘𝐾)‘𝑊)‘𝑋) ∩ (((ocH‘𝐾)‘𝑊)‘𝑌))) ∈ ran 𝐼)
166, 15eqeltrd 2890 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) ∈ ran 𝐼)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ∩ cin 3880   ⊆ wss 3881  ran crn 5520  ‘cfv 6324  (class class class)co 7135  Basecbs 16475  HLchlt 36643  LHypclh 37277  DVecHcdvh 38371  DIsoHcdih 38521  ocHcoch 38640  joinHcdjh 38687 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-riotaBAD 36246 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-undef 7922  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-oposet 36469  df-ol 36471  df-oml 36472  df-covers 36559  df-ats 36560  df-atl 36591  df-cvlat 36615  df-hlat 36644  df-llines 36791  df-lplanes 36792  df-lvols 36793  df-lines 36794  df-psubsp 36796  df-pmap 36797  df-padd 37089  df-lhyp 37281  df-laut 37282  df-ldil 37397  df-ltrn 37398  df-trl 37452  df-tendo 38048  df-edring 38050  df-disoa 38322  df-dvech 38372  df-dib 38432  df-dic 38466  df-dih 38522  df-doch 38641  df-djh 38688 This theorem is referenced by:  djhljjN  38695  djhlsmcl  38707  djhcvat42  38708  dihjat1lem  38721  dihsmsprn  38723
 Copyright terms: Public domain W3C validator