Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mbfneg | Structured version Visualization version GIF version |
Description: The negative of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.) |
Ref | Expression |
---|---|
mbfneg.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
mbfneg.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
Ref | Expression |
---|---|
mbfneg | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | mbfneg.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
3 | 1, 2 | dmmptd 6482 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
4 | mbfneg.2 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
5 | 4 | dmexd 7636 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
6 | 3, 5 | eqeltrrd 2834 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
7 | neg1rr 11831 | . . . . 5 ⊢ -1 ∈ ℝ | |
8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -1 ∈ ℝ) |
9 | fconstmpt 5585 | . . . . 5 ⊢ (𝐴 × {-1}) = (𝑥 ∈ 𝐴 ↦ -1) | |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴 × {-1}) = (𝑥 ∈ 𝐴 ↦ -1)) |
11 | eqidd 2739 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
12 | 6, 8, 2, 10, 11 | offval2 7444 | . . 3 ⊢ (𝜑 → ((𝐴 × {-1}) ∘f · (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (-1 · 𝐵))) |
13 | 4, 2 | mbfmptcl 24388 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
14 | 13 | mulm1d 11170 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-1 · 𝐵) = -𝐵) |
15 | 14 | mpteq2dva 5125 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (-1 · 𝐵)) = (𝑥 ∈ 𝐴 ↦ -𝐵)) |
16 | 12, 15 | eqtrd 2773 | . 2 ⊢ (𝜑 → ((𝐴 × {-1}) ∘f · (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ -𝐵)) |
17 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → -1 ∈ ℝ) |
18 | 13 | fmpttd 6889 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
19 | 4, 17, 18 | mbfmulc2re 24400 | . 2 ⊢ (𝜑 → ((𝐴 × {-1}) ∘f · (𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ MblFn) |
20 | 16, 19 | eqeltrrd 2834 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 Vcvv 3398 {csn 4516 ↦ cmpt 5110 × cxp 5523 dom cdm 5525 (class class class)co 7170 ∘f cof 7423 ℂcc 10613 ℝcr 10614 1c1 10616 · cmul 10620 -cneg 10949 MblFncmbf 24366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-of 7425 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-2o 8132 df-er 8320 df-map 8439 df-pm 8440 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-sup 8979 df-inf 8980 df-oi 9047 df-dju 9403 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-n0 11977 df-z 12063 df-uz 12325 df-q 12431 df-rp 12473 df-xadd 12591 df-ioo 12825 df-ico 12827 df-icc 12828 df-fz 12982 df-fzo 13125 df-fl 13253 df-seq 13461 df-exp 13522 df-hash 13783 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-clim 14935 df-sum 15136 df-xmet 20210 df-met 20211 df-ovol 24216 df-vol 24217 df-mbf 24371 |
This theorem is referenced by: mbfposb 24405 mbfsub 24414 mbfinf 24417 mbfi1flimlem 24475 itgreval 24549 ibladd 24573 iblabslem 24580 ibladdnc 35457 itgaddnclem2 35459 itgmulc2nclem2 35467 ftc1anclem6 35478 |
Copyright terms: Public domain | W3C validator |