Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfneg Structured version   Visualization version   GIF version

Theorem mbfneg 24243
 Description: The negative of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.)
Hypotheses
Ref Expression
mbfneg.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
mbfneg.2 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
Assertion
Ref Expression
mbfneg (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mbfneg
StepHypRef Expression
1 eqid 2819 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
2 mbfneg.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
31, 2dmmptd 6486 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
4 mbfneg.2 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
54dmexd 7607 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) ∈ V)
63, 5eqeltrrd 2912 . . . 4 (𝜑𝐴 ∈ V)
7 neg1rr 11744 . . . . 5 -1 ∈ ℝ
87a1i 11 . . . 4 ((𝜑𝑥𝐴) → -1 ∈ ℝ)
9 fconstmpt 5607 . . . . 5 (𝐴 × {-1}) = (𝑥𝐴 ↦ -1)
109a1i 11 . . . 4 (𝜑 → (𝐴 × {-1}) = (𝑥𝐴 ↦ -1))
11 eqidd 2820 . . . 4 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
126, 8, 2, 10, 11offval2 7418 . . 3 (𝜑 → ((𝐴 × {-1}) ∘f · (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (-1 · 𝐵)))
134, 2mbfmptcl 24229 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
1413mulm1d 11084 . . . 4 ((𝜑𝑥𝐴) → (-1 · 𝐵) = -𝐵)
1514mpteq2dva 5152 . . 3 (𝜑 → (𝑥𝐴 ↦ (-1 · 𝐵)) = (𝑥𝐴 ↦ -𝐵))
1612, 15eqtrd 2854 . 2 (𝜑 → ((𝐴 × {-1}) ∘f · (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ -𝐵))
177a1i 11 . . 3 (𝜑 → -1 ∈ ℝ)
1813fmpttd 6872 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℂ)
194, 17, 18mbfmulc2re 24241 . 2 (𝜑 → ((𝐴 × {-1}) ∘f · (𝑥𝐴𝐵)) ∈ MblFn)
2016, 19eqeltrrd 2912 1 (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ MblFn)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1531   ∈ wcel 2108  Vcvv 3493  {csn 4559   ↦ cmpt 5137   × cxp 5546  dom cdm 5548  (class class class)co 7148   ∘f cof 7399  ℂcc 10527  ℝcr 10528  1c1 10530   · cmul 10534  -cneg 10863  MblFncmbf 24207 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xadd 12500  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-xmet 20530  df-met 20531  df-ovol 24057  df-vol 24058  df-mbf 24212 This theorem is referenced by:  mbfposb  24246  mbfsub  24255  mbfinf  24258  mbfi1flimlem  24315  itgreval  24389  ibladd  24413  iblabslem  24420  ibladdnc  34941  itgaddnclem2  34943  itgmulc2nclem2  34951  ftc1anclem6  34964
 Copyright terms: Public domain W3C validator