Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mbfneg | Structured version Visualization version GIF version |
Description: The negative of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.) |
Ref | Expression |
---|---|
mbfneg.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
mbfneg.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
Ref | Expression |
---|---|
mbfneg | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | mbfneg.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
3 | 1, 2 | dmmptd 6578 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
4 | mbfneg.2 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
5 | 4 | dmexd 7752 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
6 | 3, 5 | eqeltrrd 2840 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
7 | neg1rr 12088 | . . . . 5 ⊢ -1 ∈ ℝ | |
8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -1 ∈ ℝ) |
9 | fconstmpt 5649 | . . . . 5 ⊢ (𝐴 × {-1}) = (𝑥 ∈ 𝐴 ↦ -1) | |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴 × {-1}) = (𝑥 ∈ 𝐴 ↦ -1)) |
11 | eqidd 2739 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
12 | 6, 8, 2, 10, 11 | offval2 7553 | . . 3 ⊢ (𝜑 → ((𝐴 × {-1}) ∘f · (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (-1 · 𝐵))) |
13 | 4, 2 | mbfmptcl 24800 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
14 | 13 | mulm1d 11427 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-1 · 𝐵) = -𝐵) |
15 | 14 | mpteq2dva 5174 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (-1 · 𝐵)) = (𝑥 ∈ 𝐴 ↦ -𝐵)) |
16 | 12, 15 | eqtrd 2778 | . 2 ⊢ (𝜑 → ((𝐴 × {-1}) ∘f · (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ -𝐵)) |
17 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → -1 ∈ ℝ) |
18 | 13 | fmpttd 6989 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
19 | 4, 17, 18 | mbfmulc2re 24812 | . 2 ⊢ (𝜑 → ((𝐴 × {-1}) ∘f · (𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ MblFn) |
20 | 16, 19 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 ↦ cmpt 5157 × cxp 5587 dom cdm 5589 (class class class)co 7275 ∘f cof 7531 ℂcc 10869 ℝcr 10870 1c1 10872 · cmul 10876 -cneg 11206 MblFncmbf 24778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xadd 12849 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-xmet 20590 df-met 20591 df-ovol 24628 df-vol 24629 df-mbf 24783 |
This theorem is referenced by: mbfposb 24817 mbfsub 24826 mbfinf 24829 mbfi1flimlem 24887 itgreval 24961 ibladd 24985 iblabslem 24992 ibladdnc 35834 itgaddnclem2 35836 itgmulc2nclem2 35844 ftc1anclem6 35855 |
Copyright terms: Public domain | W3C validator |