MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmulc2re Structured version   Visualization version   GIF version

Theorem mbfmulc2re 24717
Description: Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
mbfmulc2re.1 (𝜑𝐹 ∈ MblFn)
mbfmulc2re.2 (𝜑𝐵 ∈ ℝ)
mbfmulc2re.3 (𝜑𝐹:𝐴⟶ℂ)
Assertion
Ref Expression
mbfmulc2re (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)

Proof of Theorem mbfmulc2re
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mbfmulc2re.3 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
21fdmd 6595 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
3 mbfmulc2re.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
43dmexd 7726 . . . 4 (𝜑 → dom 𝐹 ∈ V)
52, 4eqeltrrd 2840 . . 3 (𝜑𝐴 ∈ V)
6 mbfmulc2re.2 . . . 4 (𝜑𝐵 ∈ ℝ)
76adantr 480 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
81ffvelrnda 6943 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
9 fconstmpt 5640 . . . 4 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
109a1i 11 . . 3 (𝜑 → (𝐴 × {𝐵}) = (𝑥𝐴𝐵))
111feqmptd 6819 . . 3 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
125, 7, 8, 10, 11offval2 7531 . 2 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) = (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))))
137, 8remul2d 14866 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 · (𝐹𝑥))) = (𝐵 · (ℜ‘(𝐹𝑥))))
1413mpteq2dva 5170 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐵 · (𝐹𝑥)))) = (𝑥𝐴 ↦ (𝐵 · (ℜ‘(𝐹𝑥)))))
158recld 14833 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐹𝑥)) ∈ ℝ)
16 eqidd 2739 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) = (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))))
175, 7, 15, 10, 16offval2 7531 . . . . 5 (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥)))) = (𝑥𝐴 ↦ (𝐵 · (ℜ‘(𝐹𝑥)))))
1814, 17eqtr4d 2781 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐵 · (𝐹𝑥)))) = ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥)))))
1911, 3eqeltrrd 2840 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (𝐹𝑥)) ∈ MblFn)
208ismbfcn2 24707 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝑥)) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn)))
2119, 20mpbid 231 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn))
2221simpld 494 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn)
2315fmpttd 6971 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))):𝐴⟶ℝ)
2422, 6, 23mbfmulc2lem 24716 . . . 4 (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥)))) ∈ MblFn)
2518, 24eqeltrd 2839 . . 3 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐵 · (𝐹𝑥)))) ∈ MblFn)
267, 8immul2d 14867 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘(𝐵 · (𝐹𝑥))) = (𝐵 · (ℑ‘(𝐹𝑥))))
2726mpteq2dva 5170 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐵 · (𝐹𝑥)))) = (𝑥𝐴 ↦ (𝐵 · (ℑ‘(𝐹𝑥)))))
288imcld 14834 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘(𝐹𝑥)) ∈ ℝ)
29 eqidd 2739 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) = (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))))
305, 7, 28, 10, 29offval2 7531 . . . . 5 (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥)))) = (𝑥𝐴 ↦ (𝐵 · (ℑ‘(𝐹𝑥)))))
3127, 30eqtr4d 2781 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐵 · (𝐹𝑥)))) = ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥)))))
3221simprd 495 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn)
3328fmpttd 6971 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))):𝐴⟶ℝ)
3432, 6, 33mbfmulc2lem 24716 . . . 4 (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥)))) ∈ MblFn)
3531, 34eqeltrd 2839 . . 3 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐵 · (𝐹𝑥)))) ∈ MblFn)
366recnd 10934 . . . . . 6 (𝜑𝐵 ∈ ℂ)
3736adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3837, 8mulcld 10926 . . . 4 ((𝜑𝑥𝐴) → (𝐵 · (𝐹𝑥)) ∈ ℂ)
3938ismbfcn2 24707 . . 3 (𝜑 → ((𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘(𝐵 · (𝐹𝑥)))) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘(𝐵 · (𝐹𝑥)))) ∈ MblFn)))
4025, 35, 39mpbir2and 709 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))) ∈ MblFn)
4112, 40eqeltrd 2839 1 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558  cmpt 5153   × cxp 5578  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  cc 10800  cr 10801   · cmul 10807  cre 14736  cim 14737  MblFncmbf 24683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-xmet 20503  df-met 20504  df-ovol 24533  df-vol 24534  df-mbf 24688
This theorem is referenced by:  mbfneg  24719  mbfmulc2  24732  itgmulc2nclem2  35771  itgmulc2nc  35772  itgabsnc  35773
  Copyright terms: Public domain W3C validator