| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfmulc2re | Structured version Visualization version GIF version | ||
| Description: Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 15-Aug-2014.) |
| Ref | Expression |
|---|---|
| mbfmulc2re.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| mbfmulc2re.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| mbfmulc2re.3 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| Ref | Expression |
|---|---|
| mbfmulc2re | ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmulc2re.3 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 2 | 1 | fdmd 6698 | . . . 4 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 3 | mbfmulc2re.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ MblFn) | |
| 4 | 3 | dmexd 7879 | . . . 4 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 5 | 2, 4 | eqeltrrd 2829 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 6 | mbfmulc2re.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 8 | 1 | ffvelcdmda 7056 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
| 9 | fconstmpt 5700 | . . . 4 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 11 | 1 | feqmptd 6929 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 12 | 5, 7, 8, 10, 11 | offval2 7673 | . 2 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥)))) |
| 13 | 7, 8 | remul2d 15193 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐵 · (𝐹‘𝑥))) = (𝐵 · (ℜ‘(𝐹‘𝑥)))) |
| 14 | 13 | mpteq2dva 5200 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐵 · (𝐹‘𝑥)))) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (ℜ‘(𝐹‘𝑥))))) |
| 15 | 8 | recld 15160 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐹‘𝑥)) ∈ ℝ) |
| 16 | eqidd 2730 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑥))) = (𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑥)))) | |
| 17 | 5, 7, 15, 10, 16 | offval2 7673 | . . . . 5 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑥)))) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (ℜ‘(𝐹‘𝑥))))) |
| 18 | 14, 17 | eqtr4d 2767 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐵 · (𝐹‘𝑥)))) = ((𝐴 × {𝐵}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑥))))) |
| 19 | 11, 3 | eqeltrrd 2829 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ∈ MblFn) |
| 20 | 8 | ismbfcn2 25539 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑥))) ∈ MblFn))) |
| 21 | 19, 20 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑥))) ∈ MblFn)) |
| 22 | 21 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
| 23 | 15 | fmpttd 7087 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑥))):𝐴⟶ℝ) |
| 24 | 22, 6, 23 | mbfmulc2lem 25548 | . . . 4 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑥)))) ∈ MblFn) |
| 25 | 18, 24 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐵 · (𝐹‘𝑥)))) ∈ MblFn) |
| 26 | 7, 8 | immul2d 15194 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘(𝐵 · (𝐹‘𝑥))) = (𝐵 · (ℑ‘(𝐹‘𝑥)))) |
| 27 | 26 | mpteq2dva 5200 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐵 · (𝐹‘𝑥)))) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (ℑ‘(𝐹‘𝑥))))) |
| 28 | 8 | imcld 15161 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘(𝐹‘𝑥)) ∈ ℝ) |
| 29 | eqidd 2730 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑥))) = (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑥)))) | |
| 30 | 5, 7, 28, 10, 29 | offval2 7673 | . . . . 5 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑥)))) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (ℑ‘(𝐹‘𝑥))))) |
| 31 | 27, 30 | eqtr4d 2767 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐵 · (𝐹‘𝑥)))) = ((𝐴 × {𝐵}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑥))))) |
| 32 | 21 | simprd 495 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑥))) ∈ MblFn) |
| 33 | 28 | fmpttd 7087 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑥))):𝐴⟶ℝ) |
| 34 | 32, 6, 33 | mbfmulc2lem 25548 | . . . 4 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑥)))) ∈ MblFn) |
| 35 | 31, 34 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐵 · (𝐹‘𝑥)))) ∈ MblFn) |
| 36 | 6 | recnd 11202 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 37 | 36 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 38 | 37, 8 | mulcld 11194 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 · (𝐹‘𝑥)) ∈ ℂ) |
| 39 | 38 | ismbfcn2 25539 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥))) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐵 · (𝐹‘𝑥)))) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐵 · (𝐹‘𝑥)))) ∈ MblFn))) |
| 40 | 25, 35, 39 | mpbir2and 713 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥))) ∈ MblFn) |
| 41 | 12, 40 | eqeltrd 2828 | 1 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 ↦ cmpt 5188 × cxp 5636 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 ℂcc 11066 ℝcr 11067 · cmul 11073 ℜcre 15063 ℑcim 15064 MblFncmbf 25515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xadd 13073 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-xmet 21257 df-met 21258 df-ovol 25365 df-vol 25366 df-mbf 25520 |
| This theorem is referenced by: mbfneg 25551 mbfmulc2 25564 itgmulc2nclem2 37681 itgmulc2nc 37682 itgabsnc 37683 |
| Copyright terms: Public domain | W3C validator |