MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmulc2re Structured version   Visualization version   GIF version

Theorem mbfmulc2re 25697
Description: Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
mbfmulc2re.1 (𝜑𝐹 ∈ MblFn)
mbfmulc2re.2 (𝜑𝐵 ∈ ℝ)
mbfmulc2re.3 (𝜑𝐹:𝐴⟶ℂ)
Assertion
Ref Expression
mbfmulc2re (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)

Proof of Theorem mbfmulc2re
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mbfmulc2re.3 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
21fdmd 6747 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
3 mbfmulc2re.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
43dmexd 7926 . . . 4 (𝜑 → dom 𝐹 ∈ V)
52, 4eqeltrrd 2840 . . 3 (𝜑𝐴 ∈ V)
6 mbfmulc2re.2 . . . 4 (𝜑𝐵 ∈ ℝ)
76adantr 480 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
81ffvelcdmda 7104 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
9 fconstmpt 5751 . . . 4 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
109a1i 11 . . 3 (𝜑 → (𝐴 × {𝐵}) = (𝑥𝐴𝐵))
111feqmptd 6977 . . 3 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
125, 7, 8, 10, 11offval2 7717 . 2 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) = (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))))
137, 8remul2d 15263 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 · (𝐹𝑥))) = (𝐵 · (ℜ‘(𝐹𝑥))))
1413mpteq2dva 5248 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐵 · (𝐹𝑥)))) = (𝑥𝐴 ↦ (𝐵 · (ℜ‘(𝐹𝑥)))))
158recld 15230 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐹𝑥)) ∈ ℝ)
16 eqidd 2736 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) = (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))))
175, 7, 15, 10, 16offval2 7717 . . . . 5 (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥)))) = (𝑥𝐴 ↦ (𝐵 · (ℜ‘(𝐹𝑥)))))
1814, 17eqtr4d 2778 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐵 · (𝐹𝑥)))) = ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥)))))
1911, 3eqeltrrd 2840 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (𝐹𝑥)) ∈ MblFn)
208ismbfcn2 25687 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝑥)) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn)))
2119, 20mpbid 232 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn))
2221simpld 494 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn)
2315fmpttd 7135 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))):𝐴⟶ℝ)
2422, 6, 23mbfmulc2lem 25696 . . . 4 (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥)))) ∈ MblFn)
2518, 24eqeltrd 2839 . . 3 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐵 · (𝐹𝑥)))) ∈ MblFn)
267, 8immul2d 15264 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘(𝐵 · (𝐹𝑥))) = (𝐵 · (ℑ‘(𝐹𝑥))))
2726mpteq2dva 5248 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐵 · (𝐹𝑥)))) = (𝑥𝐴 ↦ (𝐵 · (ℑ‘(𝐹𝑥)))))
288imcld 15231 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘(𝐹𝑥)) ∈ ℝ)
29 eqidd 2736 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) = (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))))
305, 7, 28, 10, 29offval2 7717 . . . . 5 (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥)))) = (𝑥𝐴 ↦ (𝐵 · (ℑ‘(𝐹𝑥)))))
3127, 30eqtr4d 2778 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐵 · (𝐹𝑥)))) = ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥)))))
3221simprd 495 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn)
3328fmpttd 7135 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))):𝐴⟶ℝ)
3432, 6, 33mbfmulc2lem 25696 . . . 4 (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥)))) ∈ MblFn)
3531, 34eqeltrd 2839 . . 3 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐵 · (𝐹𝑥)))) ∈ MblFn)
366recnd 11287 . . . . . 6 (𝜑𝐵 ∈ ℂ)
3736adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3837, 8mulcld 11279 . . . 4 ((𝜑𝑥𝐴) → (𝐵 · (𝐹𝑥)) ∈ ℂ)
3938ismbfcn2 25687 . . 3 (𝜑 → ((𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘(𝐵 · (𝐹𝑥)))) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘(𝐵 · (𝐹𝑥)))) ∈ MblFn)))
4025, 35, 39mpbir2and 713 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))) ∈ MblFn)
4112, 40eqeltrd 2839 1 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  cmpt 5231   × cxp 5687  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  cc 11151  cr 11152   · cmul 11158  cre 15133  cim 15134  MblFncmbf 25663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xadd 13153  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-xmet 21375  df-met 21376  df-ovol 25513  df-vol 25514  df-mbf 25668
This theorem is referenced by:  mbfneg  25699  mbfmulc2  25712  itgmulc2nclem2  37674  itgmulc2nc  37675  itgabsnc  37676
  Copyright terms: Public domain W3C validator