MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmulc2re Structured version   Visualization version   GIF version

Theorem mbfmulc2re 25668
Description: Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
mbfmulc2re.1 (𝜑𝐹 ∈ MblFn)
mbfmulc2re.2 (𝜑𝐵 ∈ ℝ)
mbfmulc2re.3 (𝜑𝐹:𝐴⟶ℂ)
Assertion
Ref Expression
mbfmulc2re (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)

Proof of Theorem mbfmulc2re
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mbfmulc2re.3 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
21fdmd 6738 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
3 mbfmulc2re.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
43dmexd 7916 . . . 4 (𝜑 → dom 𝐹 ∈ V)
52, 4eqeltrrd 2827 . . 3 (𝜑𝐴 ∈ V)
6 mbfmulc2re.2 . . . 4 (𝜑𝐵 ∈ ℝ)
76adantr 479 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
81ffvelcdmda 7098 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
9 fconstmpt 5744 . . . 4 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
109a1i 11 . . 3 (𝜑 → (𝐴 × {𝐵}) = (𝑥𝐴𝐵))
111feqmptd 6971 . . 3 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
125, 7, 8, 10, 11offval2 7710 . 2 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) = (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))))
137, 8remul2d 15232 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 · (𝐹𝑥))) = (𝐵 · (ℜ‘(𝐹𝑥))))
1413mpteq2dva 5253 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐵 · (𝐹𝑥)))) = (𝑥𝐴 ↦ (𝐵 · (ℜ‘(𝐹𝑥)))))
158recld 15199 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐹𝑥)) ∈ ℝ)
16 eqidd 2727 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) = (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))))
175, 7, 15, 10, 16offval2 7710 . . . . 5 (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥)))) = (𝑥𝐴 ↦ (𝐵 · (ℜ‘(𝐹𝑥)))))
1814, 17eqtr4d 2769 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐵 · (𝐹𝑥)))) = ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥)))))
1911, 3eqeltrrd 2827 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (𝐹𝑥)) ∈ MblFn)
208ismbfcn2 25658 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝑥)) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn)))
2119, 20mpbid 231 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn))
2221simpld 493 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn)
2315fmpttd 7129 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))):𝐴⟶ℝ)
2422, 6, 23mbfmulc2lem 25667 . . . 4 (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥)))) ∈ MblFn)
2518, 24eqeltrd 2826 . . 3 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐵 · (𝐹𝑥)))) ∈ MblFn)
267, 8immul2d 15233 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘(𝐵 · (𝐹𝑥))) = (𝐵 · (ℑ‘(𝐹𝑥))))
2726mpteq2dva 5253 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐵 · (𝐹𝑥)))) = (𝑥𝐴 ↦ (𝐵 · (ℑ‘(𝐹𝑥)))))
288imcld 15200 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘(𝐹𝑥)) ∈ ℝ)
29 eqidd 2727 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) = (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))))
305, 7, 28, 10, 29offval2 7710 . . . . 5 (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥)))) = (𝑥𝐴 ↦ (𝐵 · (ℑ‘(𝐹𝑥)))))
3127, 30eqtr4d 2769 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐵 · (𝐹𝑥)))) = ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥)))))
3221simprd 494 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn)
3328fmpttd 7129 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))):𝐴⟶ℝ)
3432, 6, 33mbfmulc2lem 25667 . . . 4 (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥)))) ∈ MblFn)
3531, 34eqeltrd 2826 . . 3 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐵 · (𝐹𝑥)))) ∈ MblFn)
366recnd 11292 . . . . . 6 (𝜑𝐵 ∈ ℂ)
3736adantr 479 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3837, 8mulcld 11284 . . . 4 ((𝜑𝑥𝐴) → (𝐵 · (𝐹𝑥)) ∈ ℂ)
3938ismbfcn2 25658 . . 3 (𝜑 → ((𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘(𝐵 · (𝐹𝑥)))) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘(𝐵 · (𝐹𝑥)))) ∈ MblFn)))
4025, 35, 39mpbir2and 711 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))) ∈ MblFn)
4112, 40eqeltrd 2826 1 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  {csn 4633  cmpt 5236   × cxp 5680  dom cdm 5682  wf 6550  cfv 6554  (class class class)co 7424  f cof 7688  cc 11156  cr 11157   · cmul 11163  cre 15102  cim 15103  MblFncmbf 25634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-inf 9486  df-oi 9553  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-q 12985  df-rp 13029  df-xadd 13147  df-ioo 13382  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-sum 15691  df-xmet 21336  df-met 21337  df-ovol 25484  df-vol 25485  df-mbf 25639
This theorem is referenced by:  mbfneg  25670  mbfmulc2  25683  itgmulc2nclem2  37388  itgmulc2nc  37389  itgabsnc  37390
  Copyright terms: Public domain W3C validator