MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmulc2re Structured version   Visualization version   GIF version

Theorem mbfmulc2re 24231
Description: Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
mbfmulc2re.1 (𝜑𝐹 ∈ MblFn)
mbfmulc2re.2 (𝜑𝐵 ∈ ℝ)
mbfmulc2re.3 (𝜑𝐹:𝐴⟶ℂ)
Assertion
Ref Expression
mbfmulc2re (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)

Proof of Theorem mbfmulc2re
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mbfmulc2re.3 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
21fdmd 6499 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
3 mbfmulc2re.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
43dmexd 7593 . . . 4 (𝜑 → dom 𝐹 ∈ V)
52, 4eqeltrrd 2912 . . 3 (𝜑𝐴 ∈ V)
6 mbfmulc2re.2 . . . 4 (𝜑𝐵 ∈ ℝ)
76adantr 483 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
81ffvelrnda 6827 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
9 fconstmpt 5590 . . . 4 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
109a1i 11 . . 3 (𝜑 → (𝐴 × {𝐵}) = (𝑥𝐴𝐵))
111feqmptd 6709 . . 3 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
125, 7, 8, 10, 11offval2 7404 . 2 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) = (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))))
137, 8remul2d 14566 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 · (𝐹𝑥))) = (𝐵 · (ℜ‘(𝐹𝑥))))
1413mpteq2dva 5137 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐵 · (𝐹𝑥)))) = (𝑥𝐴 ↦ (𝐵 · (ℜ‘(𝐹𝑥)))))
158recld 14533 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐹𝑥)) ∈ ℝ)
16 eqidd 2821 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) = (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))))
175, 7, 15, 10, 16offval2 7404 . . . . 5 (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥)))) = (𝑥𝐴 ↦ (𝐵 · (ℜ‘(𝐹𝑥)))))
1814, 17eqtr4d 2858 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐵 · (𝐹𝑥)))) = ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥)))))
1911, 3eqeltrrd 2912 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (𝐹𝑥)) ∈ MblFn)
208ismbfcn2 24221 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝑥)) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn)))
2119, 20mpbid 234 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn))
2221simpld 497 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn)
2315fmpttd 6855 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))):𝐴⟶ℝ)
2422, 6, 23mbfmulc2lem 24230 . . . 4 (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥)))) ∈ MblFn)
2518, 24eqeltrd 2911 . . 3 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐵 · (𝐹𝑥)))) ∈ MblFn)
267, 8immul2d 14567 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘(𝐵 · (𝐹𝑥))) = (𝐵 · (ℑ‘(𝐹𝑥))))
2726mpteq2dva 5137 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐵 · (𝐹𝑥)))) = (𝑥𝐴 ↦ (𝐵 · (ℑ‘(𝐹𝑥)))))
288imcld 14534 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘(𝐹𝑥)) ∈ ℝ)
29 eqidd 2821 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) = (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))))
305, 7, 28, 10, 29offval2 7404 . . . . 5 (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥)))) = (𝑥𝐴 ↦ (𝐵 · (ℑ‘(𝐹𝑥)))))
3127, 30eqtr4d 2858 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐵 · (𝐹𝑥)))) = ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥)))))
3221simprd 498 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn)
3328fmpttd 6855 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))):𝐴⟶ℝ)
3432, 6, 33mbfmulc2lem 24230 . . . 4 (𝜑 → ((𝐴 × {𝐵}) ∘f · (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥)))) ∈ MblFn)
3531, 34eqeltrd 2911 . . 3 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐵 · (𝐹𝑥)))) ∈ MblFn)
366recnd 10647 . . . . . 6 (𝜑𝐵 ∈ ℂ)
3736adantr 483 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3837, 8mulcld 10639 . . . 4 ((𝜑𝑥𝐴) → (𝐵 · (𝐹𝑥)) ∈ ℂ)
3938ismbfcn2 24221 . . 3 (𝜑 → ((𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘(𝐵 · (𝐹𝑥)))) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘(𝐵 · (𝐹𝑥)))) ∈ MblFn)))
4025, 35, 39mpbir2and 711 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))) ∈ MblFn)
4112, 40eqeltrd 2911 1 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3473  {csn 4543  cmpt 5122   × cxp 5529  dom cdm 5531  wf 6327  cfv 6331  (class class class)co 7133  f cof 7385  cc 10513  cr 10514   · cmul 10520  cre 14436  cim 14437  MblFncmbf 24197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-inf2 9082  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-se 5491  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-isom 6340  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-of 7387  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-2o 8081  df-oadd 8084  df-er 8267  df-map 8386  df-pm 8387  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-sup 8884  df-inf 8885  df-oi 8952  df-dju 9308  df-card 9346  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-n0 11877  df-z 11961  df-uz 12223  df-q 12328  df-rp 12369  df-xadd 12487  df-ioo 12721  df-ico 12723  df-icc 12724  df-fz 12877  df-fzo 13018  df-fl 13146  df-seq 13354  df-exp 13415  df-hash 13676  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-clim 14825  df-sum 15023  df-xmet 20514  df-met 20515  df-ovol 24047  df-vol 24048  df-mbf 24202
This theorem is referenced by:  mbfneg  24233  mbfmulc2  24246  itgmulc2nclem2  35000  itgmulc2nc  35001  itgabsnc  35002
  Copyright terms: Public domain W3C validator