| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrptlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for dchrpt 27185. (Contributed by Mario Carneiro, 28-Apr-2016.) |
| Ref | Expression |
|---|---|
| dchrpt.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrpt.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchrpt.d | ⊢ 𝐷 = (Base‘𝐺) |
| dchrpt.b | ⊢ 𝐵 = (Base‘𝑍) |
| dchrpt.1 | ⊢ 1 = (1r‘𝑍) |
| dchrpt.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| dchrpt.n1 | ⊢ (𝜑 → 𝐴 ≠ 1 ) |
| dchrpt.u | ⊢ 𝑈 = (Unit‘𝑍) |
| dchrpt.h | ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) |
| dchrpt.m | ⊢ · = (.g‘𝐻) |
| dchrpt.s | ⊢ 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘)))) |
| dchrpt.au | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| dchrpt.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝑈) |
| dchrpt.2 | ⊢ (𝜑 → 𝐻dom DProd 𝑆) |
| dchrpt.3 | ⊢ (𝜑 → (𝐻 DProd 𝑆) = 𝑈) |
| Ref | Expression |
|---|---|
| dchrptlem3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchrpt.n1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 1 ) | |
| 2 | dchrpt.n | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 3 | 2 | nnnn0d 12510 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 4 | dchrpt.z | . . . . . . . . . . . 12 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 5 | 4 | zncrng 21461 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
| 6 | 3, 5 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑍 ∈ CRing) |
| 7 | crngring 20161 | . . . . . . . . . 10 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ∈ Ring) |
| 9 | dchrpt.u | . . . . . . . . . 10 ⊢ 𝑈 = (Unit‘𝑍) | |
| 10 | dchrpt.h | . . . . . . . . . 10 ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) | |
| 11 | 9, 10 | unitgrp 20299 | . . . . . . . . 9 ⊢ (𝑍 ∈ Ring → 𝐻 ∈ Grp) |
| 12 | 8, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ∈ Grp) |
| 13 | 12 | grpmndd 18885 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| 14 | dchrpt.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ Word 𝑈) | |
| 15 | 14 | dmexd 7882 | . . . . . . 7 ⊢ (𝜑 → dom 𝑊 ∈ V) |
| 16 | eqid 2730 | . . . . . . . 8 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 17 | 16 | gsumz 18770 | . . . . . . 7 ⊢ ((𝐻 ∈ Mnd ∧ dom 𝑊 ∈ V) → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g‘𝐻))) = (0g‘𝐻)) |
| 18 | 13, 15, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g‘𝐻))) = (0g‘𝐻)) |
| 19 | dchrpt.1 | . . . . . . . . . 10 ⊢ 1 = (1r‘𝑍) | |
| 20 | 9, 10, 19 | unitgrpid 20301 | . . . . . . . . 9 ⊢ (𝑍 ∈ Ring → 1 = (0g‘𝐻)) |
| 21 | 8, 20 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 1 = (0g‘𝐻)) |
| 22 | 21 | mpteq2dv 5204 | . . . . . . 7 ⊢ (𝜑 → (𝑎 ∈ dom 𝑊 ↦ 1 ) = (𝑎 ∈ dom 𝑊 ↦ (0g‘𝐻))) |
| 23 | 22 | oveq2d 7406 | . . . . . 6 ⊢ (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 )) = (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g‘𝐻)))) |
| 24 | 18, 23, 21 | 3eqtr4d 2775 | . . . . 5 ⊢ (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 )) = 1 ) |
| 25 | 1, 24 | neeqtrrd 3000 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 ))) |
| 26 | dchrpt.2 | . . . . . 6 ⊢ (𝜑 → 𝐻dom DProd 𝑆) | |
| 27 | zex 12545 | . . . . . . . . . 10 ⊢ ℤ ∈ V | |
| 28 | 27 | mptex 7200 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘))) ∈ V |
| 29 | 28 | rnex 7889 | . . . . . . . 8 ⊢ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘))) ∈ V |
| 30 | dchrpt.s | . . . . . . . 8 ⊢ 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘)))) | |
| 31 | 29, 30 | dmmpti 6665 | . . . . . . 7 ⊢ dom 𝑆 = dom 𝑊 |
| 32 | 31 | a1i 11 | . . . . . 6 ⊢ (𝜑 → dom 𝑆 = dom 𝑊) |
| 33 | eqid 2730 | . . . . . 6 ⊢ (𝐻dProj𝑆) = (𝐻dProj𝑆) | |
| 34 | dchrpt.au | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 35 | dchrpt.3 | . . . . . . 7 ⊢ (𝜑 → (𝐻 DProd 𝑆) = 𝑈) | |
| 36 | 34, 35 | eleqtrrd 2832 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (𝐻 DProd 𝑆)) |
| 37 | eqid 2730 | . . . . . 6 ⊢ {ℎ ∈ X𝑖 ∈ dom 𝑊(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐻)} = {ℎ ∈ X𝑖 ∈ dom 𝑊(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐻)} | |
| 38 | 21 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → 1 = (0g‘𝐻)) |
| 39 | 26, 32 | dprdf2 19946 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆:dom 𝑊⟶(SubGrp‘𝐻)) |
| 40 | 39 | ffvelcdmda 7059 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → (𝑆‘𝑎) ∈ (SubGrp‘𝐻)) |
| 41 | 16 | subg0cl 19073 | . . . . . . . . 9 ⊢ ((𝑆‘𝑎) ∈ (SubGrp‘𝐻) → (0g‘𝐻) ∈ (𝑆‘𝑎)) |
| 42 | 40, 41 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → (0g‘𝐻) ∈ (𝑆‘𝑎)) |
| 43 | 38, 42 | eqeltrd 2829 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → 1 ∈ (𝑆‘𝑎)) |
| 44 | 19 | fvexi 6875 | . . . . . . . . . 10 ⊢ 1 ∈ V |
| 45 | 44 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ V) |
| 46 | 15, 45 | fczfsuppd 9344 | . . . . . . . 8 ⊢ (𝜑 → (dom 𝑊 × { 1 }) finSupp 1 ) |
| 47 | fconstmpt 5703 | . . . . . . . . . 10 ⊢ (dom 𝑊 × { 1 }) = (𝑎 ∈ dom 𝑊 ↦ 1 ) | |
| 48 | 47 | eqcomi 2739 | . . . . . . . . 9 ⊢ (𝑎 ∈ dom 𝑊 ↦ 1 ) = (dom 𝑊 × { 1 }) |
| 49 | 48 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → (𝑎 ∈ dom 𝑊 ↦ 1 ) = (dom 𝑊 × { 1 })) |
| 50 | 21 | eqcomd 2736 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝐻) = 1 ) |
| 51 | 46, 49, 50 | 3brtr4d 5142 | . . . . . . 7 ⊢ (𝜑 → (𝑎 ∈ dom 𝑊 ↦ 1 ) finSupp (0g‘𝐻)) |
| 52 | 37, 26, 32, 43, 51 | dprdwd 19950 | . . . . . 6 ⊢ (𝜑 → (𝑎 ∈ dom 𝑊 ↦ 1 ) ∈ {ℎ ∈ X𝑖 ∈ dom 𝑊(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐻)}) |
| 53 | 26, 32, 33, 36, 16, 37, 52 | dpjeq 19998 | . . . . 5 ⊢ (𝜑 → (𝐴 = (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 )) ↔ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )) |
| 54 | 53 | necon3abid 2962 | . . . 4 ⊢ (𝜑 → (𝐴 ≠ (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 )) ↔ ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )) |
| 55 | 25, 54 | mpbid 232 | . . 3 ⊢ (𝜑 → ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ) |
| 56 | rexnal 3083 | . . 3 ⊢ (∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ↔ ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ) | |
| 57 | 55, 56 | sylibr 234 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ) |
| 58 | df-ne 2927 | . . . 4 ⊢ ((((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 ↔ ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ) | |
| 59 | dchrpt.g | . . . . . 6 ⊢ 𝐺 = (DChr‘𝑁) | |
| 60 | dchrpt.d | . . . . . 6 ⊢ 𝐷 = (Base‘𝐺) | |
| 61 | dchrpt.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑍) | |
| 62 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑁 ∈ ℕ) |
| 63 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐴 ≠ 1 ) |
| 64 | dchrpt.m | . . . . . 6 ⊢ · = (.g‘𝐻) | |
| 65 | 34 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐴 ∈ 𝑈) |
| 66 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑊 ∈ Word 𝑈) |
| 67 | 26 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐻dom DProd 𝑆) |
| 68 | 35 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → (𝐻 DProd 𝑆) = 𝑈) |
| 69 | eqid 2730 | . . . . . 6 ⊢ (od‘𝐻) = (od‘𝐻) | |
| 70 | eqid 2730 | . . . . . 6 ⊢ (-1↑𝑐(2 / ((od‘𝐻)‘(𝑊‘𝑎)))) = (-1↑𝑐(2 / ((od‘𝐻)‘(𝑊‘𝑎)))) | |
| 71 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑎 ∈ dom 𝑊) | |
| 72 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 ) | |
| 73 | eqid 2730 | . . . . . 6 ⊢ (𝑢 ∈ 𝑈 ↦ (℩ℎ∃𝑚 ∈ ℤ ((((𝐻dProj𝑆)‘𝑎)‘𝑢) = (𝑚 · (𝑊‘𝑎)) ∧ ℎ = ((-1↑𝑐(2 / ((od‘𝐻)‘(𝑊‘𝑎))))↑𝑚)))) = (𝑢 ∈ 𝑈 ↦ (℩ℎ∃𝑚 ∈ ℤ ((((𝐻dProj𝑆)‘𝑎)‘𝑢) = (𝑚 · (𝑊‘𝑎)) ∧ ℎ = ((-1↑𝑐(2 / ((od‘𝐻)‘(𝑊‘𝑎))))↑𝑚)))) | |
| 74 | 59, 4, 60, 61, 19, 62, 63, 9, 10, 64, 30, 65, 66, 67, 68, 33, 69, 70, 71, 72, 73 | dchrptlem2 27183 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1) |
| 75 | 74 | expr 456 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → ((((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1)) |
| 76 | 58, 75 | biimtrrid 243 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → (¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1)) |
| 77 | 76 | rexlimdva 3135 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1)) |
| 78 | 57, 77 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 {crab 3408 Vcvv 3450 {csn 4592 class class class wbr 5110 ↦ cmpt 5191 × cxp 5639 dom cdm 5641 ran crn 5642 ℩cio 6465 ‘cfv 6514 (class class class)co 7390 Xcixp 8873 finSupp cfsupp 9319 1c1 11076 -cneg 11413 / cdiv 11842 ℕcn 12193 2c2 12248 ℕ0cn0 12449 ℤcz 12536 ↑cexp 14033 Word cword 14485 Basecbs 17186 ↾s cress 17207 0gc0g 17409 Σg cgsu 17410 Mndcmnd 18668 Grpcgrp 18872 .gcmg 19006 SubGrpcsubg 19059 odcod 19461 DProd cdprd 19932 dProjcdpj 19933 mulGrpcmgp 20056 1rcur 20097 Ringcrg 20149 CRingccrg 20150 Unitcui 20271 ℤ/nℤczn 21419 ↑𝑐ccxp 26471 DChrcdchr 27150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 df-er 8674 df-ec 8676 df-qs 8680 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-acn 9902 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-word 14486 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-dvds 16230 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-qus 17479 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-nsg 19063 df-eqg 19064 df-ghm 19152 df-gim 19198 df-cntz 19256 df-oppg 19285 df-od 19465 df-lsm 19573 df-pj1 19574 df-cmn 19719 df-abl 19720 df-dprd 19934 df-dpj 19935 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-lmod 20775 df-lss 20845 df-lsp 20885 df-sra 21087 df-rgmod 21088 df-lidl 21125 df-rsp 21126 df-2idl 21167 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-zring 21364 df-zrh 21420 df-zn 21423 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-limc 25774 df-dv 25775 df-log 26472 df-cxp 26473 df-dchr 27151 |
| This theorem is referenced by: dchrpt 27185 |
| Copyright terms: Public domain | W3C validator |