| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrptlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for dchrpt 27198. (Contributed by Mario Carneiro, 28-Apr-2016.) |
| Ref | Expression |
|---|---|
| dchrpt.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrpt.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchrpt.d | ⊢ 𝐷 = (Base‘𝐺) |
| dchrpt.b | ⊢ 𝐵 = (Base‘𝑍) |
| dchrpt.1 | ⊢ 1 = (1r‘𝑍) |
| dchrpt.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| dchrpt.n1 | ⊢ (𝜑 → 𝐴 ≠ 1 ) |
| dchrpt.u | ⊢ 𝑈 = (Unit‘𝑍) |
| dchrpt.h | ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) |
| dchrpt.m | ⊢ · = (.g‘𝐻) |
| dchrpt.s | ⊢ 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘)))) |
| dchrpt.au | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| dchrpt.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝑈) |
| dchrpt.2 | ⊢ (𝜑 → 𝐻dom DProd 𝑆) |
| dchrpt.3 | ⊢ (𝜑 → (𝐻 DProd 𝑆) = 𝑈) |
| Ref | Expression |
|---|---|
| dchrptlem3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchrpt.n1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 1 ) | |
| 2 | dchrpt.n | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 3 | 2 | nnnn0d 12434 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 4 | dchrpt.z | . . . . . . . . . . . 12 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 5 | 4 | zncrng 21474 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
| 6 | 3, 5 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑍 ∈ CRing) |
| 7 | crngring 20156 | . . . . . . . . . 10 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ∈ Ring) |
| 9 | dchrpt.u | . . . . . . . . . 10 ⊢ 𝑈 = (Unit‘𝑍) | |
| 10 | dchrpt.h | . . . . . . . . . 10 ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) | |
| 11 | 9, 10 | unitgrp 20294 | . . . . . . . . 9 ⊢ (𝑍 ∈ Ring → 𝐻 ∈ Grp) |
| 12 | 8, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ∈ Grp) |
| 13 | 12 | grpmndd 18851 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| 14 | dchrpt.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ Word 𝑈) | |
| 15 | 14 | dmexd 7828 | . . . . . . 7 ⊢ (𝜑 → dom 𝑊 ∈ V) |
| 16 | eqid 2730 | . . . . . . . 8 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 17 | 16 | gsumz 18736 | . . . . . . 7 ⊢ ((𝐻 ∈ Mnd ∧ dom 𝑊 ∈ V) → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g‘𝐻))) = (0g‘𝐻)) |
| 18 | 13, 15, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g‘𝐻))) = (0g‘𝐻)) |
| 19 | dchrpt.1 | . . . . . . . . . 10 ⊢ 1 = (1r‘𝑍) | |
| 20 | 9, 10, 19 | unitgrpid 20296 | . . . . . . . . 9 ⊢ (𝑍 ∈ Ring → 1 = (0g‘𝐻)) |
| 21 | 8, 20 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 1 = (0g‘𝐻)) |
| 22 | 21 | mpteq2dv 5183 | . . . . . . 7 ⊢ (𝜑 → (𝑎 ∈ dom 𝑊 ↦ 1 ) = (𝑎 ∈ dom 𝑊 ↦ (0g‘𝐻))) |
| 23 | 22 | oveq2d 7357 | . . . . . 6 ⊢ (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 )) = (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g‘𝐻)))) |
| 24 | 18, 23, 21 | 3eqtr4d 2775 | . . . . 5 ⊢ (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 )) = 1 ) |
| 25 | 1, 24 | neeqtrrd 3000 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 ))) |
| 26 | dchrpt.2 | . . . . . 6 ⊢ (𝜑 → 𝐻dom DProd 𝑆) | |
| 27 | zex 12469 | . . . . . . . . . 10 ⊢ ℤ ∈ V | |
| 28 | 27 | mptex 7152 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘))) ∈ V |
| 29 | 28 | rnex 7835 | . . . . . . . 8 ⊢ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘))) ∈ V |
| 30 | dchrpt.s | . . . . . . . 8 ⊢ 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘)))) | |
| 31 | 29, 30 | dmmpti 6621 | . . . . . . 7 ⊢ dom 𝑆 = dom 𝑊 |
| 32 | 31 | a1i 11 | . . . . . 6 ⊢ (𝜑 → dom 𝑆 = dom 𝑊) |
| 33 | eqid 2730 | . . . . . 6 ⊢ (𝐻dProj𝑆) = (𝐻dProj𝑆) | |
| 34 | dchrpt.au | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 35 | dchrpt.3 | . . . . . . 7 ⊢ (𝜑 → (𝐻 DProd 𝑆) = 𝑈) | |
| 36 | 34, 35 | eleqtrrd 2832 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (𝐻 DProd 𝑆)) |
| 37 | eqid 2730 | . . . . . 6 ⊢ {ℎ ∈ X𝑖 ∈ dom 𝑊(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐻)} = {ℎ ∈ X𝑖 ∈ dom 𝑊(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐻)} | |
| 38 | 21 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → 1 = (0g‘𝐻)) |
| 39 | 26, 32 | dprdf2 19914 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆:dom 𝑊⟶(SubGrp‘𝐻)) |
| 40 | 39 | ffvelcdmda 7012 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → (𝑆‘𝑎) ∈ (SubGrp‘𝐻)) |
| 41 | 16 | subg0cl 19039 | . . . . . . . . 9 ⊢ ((𝑆‘𝑎) ∈ (SubGrp‘𝐻) → (0g‘𝐻) ∈ (𝑆‘𝑎)) |
| 42 | 40, 41 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → (0g‘𝐻) ∈ (𝑆‘𝑎)) |
| 43 | 38, 42 | eqeltrd 2829 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → 1 ∈ (𝑆‘𝑎)) |
| 44 | 19 | fvexi 6831 | . . . . . . . . . 10 ⊢ 1 ∈ V |
| 45 | 44 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ V) |
| 46 | 15, 45 | fczfsuppd 9265 | . . . . . . . 8 ⊢ (𝜑 → (dom 𝑊 × { 1 }) finSupp 1 ) |
| 47 | fconstmpt 5676 | . . . . . . . . . 10 ⊢ (dom 𝑊 × { 1 }) = (𝑎 ∈ dom 𝑊 ↦ 1 ) | |
| 48 | 47 | eqcomi 2739 | . . . . . . . . 9 ⊢ (𝑎 ∈ dom 𝑊 ↦ 1 ) = (dom 𝑊 × { 1 }) |
| 49 | 48 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → (𝑎 ∈ dom 𝑊 ↦ 1 ) = (dom 𝑊 × { 1 })) |
| 50 | 21 | eqcomd 2736 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝐻) = 1 ) |
| 51 | 46, 49, 50 | 3brtr4d 5121 | . . . . . . 7 ⊢ (𝜑 → (𝑎 ∈ dom 𝑊 ↦ 1 ) finSupp (0g‘𝐻)) |
| 52 | 37, 26, 32, 43, 51 | dprdwd 19918 | . . . . . 6 ⊢ (𝜑 → (𝑎 ∈ dom 𝑊 ↦ 1 ) ∈ {ℎ ∈ X𝑖 ∈ dom 𝑊(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐻)}) |
| 53 | 26, 32, 33, 36, 16, 37, 52 | dpjeq 19966 | . . . . 5 ⊢ (𝜑 → (𝐴 = (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 )) ↔ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )) |
| 54 | 53 | necon3abid 2962 | . . . 4 ⊢ (𝜑 → (𝐴 ≠ (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 )) ↔ ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )) |
| 55 | 25, 54 | mpbid 232 | . . 3 ⊢ (𝜑 → ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ) |
| 56 | rexnal 3082 | . . 3 ⊢ (∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ↔ ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ) | |
| 57 | 55, 56 | sylibr 234 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ) |
| 58 | df-ne 2927 | . . . 4 ⊢ ((((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 ↔ ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ) | |
| 59 | dchrpt.g | . . . . . 6 ⊢ 𝐺 = (DChr‘𝑁) | |
| 60 | dchrpt.d | . . . . . 6 ⊢ 𝐷 = (Base‘𝐺) | |
| 61 | dchrpt.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑍) | |
| 62 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑁 ∈ ℕ) |
| 63 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐴 ≠ 1 ) |
| 64 | dchrpt.m | . . . . . 6 ⊢ · = (.g‘𝐻) | |
| 65 | 34 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐴 ∈ 𝑈) |
| 66 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑊 ∈ Word 𝑈) |
| 67 | 26 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐻dom DProd 𝑆) |
| 68 | 35 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → (𝐻 DProd 𝑆) = 𝑈) |
| 69 | eqid 2730 | . . . . . 6 ⊢ (od‘𝐻) = (od‘𝐻) | |
| 70 | eqid 2730 | . . . . . 6 ⊢ (-1↑𝑐(2 / ((od‘𝐻)‘(𝑊‘𝑎)))) = (-1↑𝑐(2 / ((od‘𝐻)‘(𝑊‘𝑎)))) | |
| 71 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑎 ∈ dom 𝑊) | |
| 72 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 ) | |
| 73 | eqid 2730 | . . . . . 6 ⊢ (𝑢 ∈ 𝑈 ↦ (℩ℎ∃𝑚 ∈ ℤ ((((𝐻dProj𝑆)‘𝑎)‘𝑢) = (𝑚 · (𝑊‘𝑎)) ∧ ℎ = ((-1↑𝑐(2 / ((od‘𝐻)‘(𝑊‘𝑎))))↑𝑚)))) = (𝑢 ∈ 𝑈 ↦ (℩ℎ∃𝑚 ∈ ℤ ((((𝐻dProj𝑆)‘𝑎)‘𝑢) = (𝑚 · (𝑊‘𝑎)) ∧ ℎ = ((-1↑𝑐(2 / ((od‘𝐻)‘(𝑊‘𝑎))))↑𝑚)))) | |
| 74 | 59, 4, 60, 61, 19, 62, 63, 9, 10, 64, 30, 65, 66, 67, 68, 33, 69, 70, 71, 72, 73 | dchrptlem2 27196 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1) |
| 75 | 74 | expr 456 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → ((((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1)) |
| 76 | 58, 75 | biimtrrid 243 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → (¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1)) |
| 77 | 76 | rexlimdva 3131 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1)) |
| 78 | 57, 77 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 {crab 3393 Vcvv 3434 {csn 4574 class class class wbr 5089 ↦ cmpt 5170 × cxp 5612 dom cdm 5614 ran crn 5615 ℩cio 6431 ‘cfv 6477 (class class class)co 7341 Xcixp 8816 finSupp cfsupp 9240 1c1 10999 -cneg 11337 / cdiv 11766 ℕcn 12117 2c2 12172 ℕ0cn0 12373 ℤcz 12460 ↑cexp 13960 Word cword 14412 Basecbs 17112 ↾s cress 17133 0gc0g 17335 Σg cgsu 17336 Mndcmnd 18634 Grpcgrp 18838 .gcmg 18972 SubGrpcsubg 19025 odcod 19429 DProd cdprd 19900 dProjcdpj 19901 mulGrpcmgp 20051 1rcur 20092 Ringcrg 20144 CRingccrg 20145 Unitcui 20266 ℤ/nℤczn 21432 ↑𝑐ccxp 26484 DChrcdchr 27163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 ax-mulf 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-ec 8619 df-qs 8623 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9824 df-acn 9827 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-ioo 13241 df-ioc 13242 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-fl 13688 df-mod 13766 df-seq 13901 df-exp 13961 df-fac 14173 df-bc 14202 df-hash 14230 df-word 14413 df-shft 14966 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-limsup 15370 df-clim 15387 df-rlim 15388 df-sum 15586 df-ef 15966 df-sin 15968 df-cos 15969 df-pi 15971 df-dvds 16156 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-rest 17318 df-topn 17319 df-0g 17337 df-gsum 17338 df-topgen 17339 df-pt 17340 df-prds 17343 df-xrs 17398 df-qtop 17403 df-imas 17404 df-qus 17405 df-xps 17406 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-mulg 18973 df-subg 19028 df-nsg 19029 df-eqg 19030 df-ghm 19118 df-gim 19164 df-cntz 19222 df-oppg 19251 df-od 19433 df-lsm 19541 df-pj1 19542 df-cmn 19687 df-abl 19688 df-dprd 19902 df-dpj 19903 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-cring 20147 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-rhm 20383 df-subrng 20454 df-subrg 20478 df-lmod 20788 df-lss 20858 df-lsp 20898 df-sra 21100 df-rgmod 21101 df-lidl 21138 df-rsp 21139 df-2idl 21180 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-fbas 21281 df-fg 21282 df-cnfld 21285 df-zring 21377 df-zrh 21433 df-zn 21436 df-top 22802 df-topon 22819 df-topsp 22841 df-bases 22854 df-cld 22927 df-ntr 22928 df-cls 22929 df-nei 23006 df-lp 23044 df-perf 23045 df-cn 23135 df-cnp 23136 df-haus 23223 df-tx 23470 df-hmeo 23663 df-fil 23754 df-fm 23846 df-flim 23847 df-flf 23848 df-xms 24228 df-ms 24229 df-tms 24230 df-cncf 24791 df-limc 25787 df-dv 25788 df-log 26485 df-cxp 26486 df-dchr 27164 |
| This theorem is referenced by: dchrpt 27198 |
| Copyright terms: Public domain | W3C validator |