MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrptlem3 Structured version   Visualization version   GIF version

Theorem dchrptlem3 27290
Description: Lemma for dchrpt 27291. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrpt.g 𝐺 = (DChr‘𝑁)
dchrpt.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrpt.d 𝐷 = (Base‘𝐺)
dchrpt.b 𝐵 = (Base‘𝑍)
dchrpt.1 1 = (1r𝑍)
dchrpt.n (𝜑𝑁 ∈ ℕ)
dchrpt.n1 (𝜑𝐴1 )
dchrpt.u 𝑈 = (Unit‘𝑍)
dchrpt.h 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
dchrpt.m · = (.g𝐻)
dchrpt.s 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))))
dchrpt.au (𝜑𝐴𝑈)
dchrpt.w (𝜑𝑊 ∈ Word 𝑈)
dchrpt.2 (𝜑𝐻dom DProd 𝑆)
dchrpt.3 (𝜑 → (𝐻 DProd 𝑆) = 𝑈)
Assertion
Ref Expression
dchrptlem3 (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Distinct variable groups:   𝑘,𝑛,𝑥, 1   𝐴,𝑘,𝑛,𝑥   𝑥,𝐵   𝑥,𝐺   𝑘,𝐻,𝑛,𝑥   𝑥,𝑁   𝑘,𝑊,𝑛,𝑥   · ,𝑘,𝑛,𝑥   𝑆,𝑘,𝑛,𝑥   𝑘,𝑍,𝑛,𝑥   𝑥,𝐷   𝜑,𝑘,𝑛,𝑥   𝑥,𝑈
Allowed substitution hints:   𝐵(𝑘,𝑛)   𝐷(𝑘,𝑛)   𝑈(𝑘,𝑛)   𝐺(𝑘,𝑛)   𝑁(𝑘,𝑛)

Proof of Theorem dchrptlem3
Dummy variables 𝑎 𝑚 𝑢 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrpt.n1 . . . . 5 (𝜑𝐴1 )
2 dchrpt.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
32nnnn0d 12576 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
4 dchrpt.z . . . . . . . . . . . 12 𝑍 = (ℤ/nℤ‘𝑁)
54zncrng 21536 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
63, 5syl 17 . . . . . . . . . 10 (𝜑𝑍 ∈ CRing)
7 crngring 20222 . . . . . . . . . 10 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
86, 7syl 17 . . . . . . . . 9 (𝜑𝑍 ∈ Ring)
9 dchrpt.u . . . . . . . . . 10 𝑈 = (Unit‘𝑍)
10 dchrpt.h . . . . . . . . . 10 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
119, 10unitgrp 20359 . . . . . . . . 9 (𝑍 ∈ Ring → 𝐻 ∈ Grp)
128, 11syl 17 . . . . . . . 8 (𝜑𝐻 ∈ Grp)
1312grpmndd 18934 . . . . . . 7 (𝜑𝐻 ∈ Mnd)
14 dchrpt.w . . . . . . . 8 (𝜑𝑊 ∈ Word 𝑈)
1514dmexd 7906 . . . . . . 7 (𝜑 → dom 𝑊 ∈ V)
16 eqid 2726 . . . . . . . 8 (0g𝐻) = (0g𝐻)
1716gsumz 18819 . . . . . . 7 ((𝐻 ∈ Mnd ∧ dom 𝑊 ∈ V) → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g𝐻))) = (0g𝐻))
1813, 15, 17syl2anc 582 . . . . . 6 (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g𝐻))) = (0g𝐻))
19 dchrpt.1 . . . . . . . . . 10 1 = (1r𝑍)
209, 10, 19unitgrpid 20361 . . . . . . . . 9 (𝑍 ∈ Ring → 1 = (0g𝐻))
218, 20syl 17 . . . . . . . 8 (𝜑1 = (0g𝐻))
2221mpteq2dv 5246 . . . . . . 7 (𝜑 → (𝑎 ∈ dom 𝑊1 ) = (𝑎 ∈ dom 𝑊 ↦ (0g𝐻)))
2322oveq2d 7430 . . . . . 6 (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊1 )) = (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g𝐻))))
2418, 23, 213eqtr4d 2776 . . . . 5 (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊1 )) = 1 )
251, 24neeqtrrd 3005 . . . 4 (𝜑𝐴 ≠ (𝐻 Σg (𝑎 ∈ dom 𝑊1 )))
26 dchrpt.2 . . . . . 6 (𝜑𝐻dom DProd 𝑆)
27 zex 12611 . . . . . . . . . 10 ℤ ∈ V
2827mptex 7230 . . . . . . . . 9 (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) ∈ V
2928rnex 7913 . . . . . . . 8 ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) ∈ V
30 dchrpt.s . . . . . . . 8 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))))
3129, 30dmmpti 6695 . . . . . . 7 dom 𝑆 = dom 𝑊
3231a1i 11 . . . . . 6 (𝜑 → dom 𝑆 = dom 𝑊)
33 eqid 2726 . . . . . 6 (𝐻dProj𝑆) = (𝐻dProj𝑆)
34 dchrpt.au . . . . . . 7 (𝜑𝐴𝑈)
35 dchrpt.3 . . . . . . 7 (𝜑 → (𝐻 DProd 𝑆) = 𝑈)
3634, 35eleqtrrd 2829 . . . . . 6 (𝜑𝐴 ∈ (𝐻 DProd 𝑆))
37 eqid 2726 . . . . . 6 {X𝑖 ∈ dom 𝑊(𝑆𝑖) ∣ finSupp (0g𝐻)} = {X𝑖 ∈ dom 𝑊(𝑆𝑖) ∣ finSupp (0g𝐻)}
3821adantr 479 . . . . . . . 8 ((𝜑𝑎 ∈ dom 𝑊) → 1 = (0g𝐻))
3926, 32dprdf2 20001 . . . . . . . . . 10 (𝜑𝑆:dom 𝑊⟶(SubGrp‘𝐻))
4039ffvelcdmda 7088 . . . . . . . . 9 ((𝜑𝑎 ∈ dom 𝑊) → (𝑆𝑎) ∈ (SubGrp‘𝐻))
4116subg0cl 19122 . . . . . . . . 9 ((𝑆𝑎) ∈ (SubGrp‘𝐻) → (0g𝐻) ∈ (𝑆𝑎))
4240, 41syl 17 . . . . . . . 8 ((𝜑𝑎 ∈ dom 𝑊) → (0g𝐻) ∈ (𝑆𝑎))
4338, 42eqeltrd 2826 . . . . . . 7 ((𝜑𝑎 ∈ dom 𝑊) → 1 ∈ (𝑆𝑎))
4419fvexi 6905 . . . . . . . . . 10 1 ∈ V
4544a1i 11 . . . . . . . . 9 (𝜑1 ∈ V)
4615, 45fczfsuppd 9420 . . . . . . . 8 (𝜑 → (dom 𝑊 × { 1 }) finSupp 1 )
47 fconstmpt 5735 . . . . . . . . . 10 (dom 𝑊 × { 1 }) = (𝑎 ∈ dom 𝑊1 )
4847eqcomi 2735 . . . . . . . . 9 (𝑎 ∈ dom 𝑊1 ) = (dom 𝑊 × { 1 })
4948a1i 11 . . . . . . . 8 (𝜑 → (𝑎 ∈ dom 𝑊1 ) = (dom 𝑊 × { 1 }))
5021eqcomd 2732 . . . . . . . 8 (𝜑 → (0g𝐻) = 1 )
5146, 49, 503brtr4d 5176 . . . . . . 7 (𝜑 → (𝑎 ∈ dom 𝑊1 ) finSupp (0g𝐻))
5237, 26, 32, 43, 51dprdwd 20005 . . . . . 6 (𝜑 → (𝑎 ∈ dom 𝑊1 ) ∈ {X𝑖 ∈ dom 𝑊(𝑆𝑖) ∣ finSupp (0g𝐻)})
5326, 32, 33, 36, 16, 37, 52dpjeq 20053 . . . . 5 (𝜑 → (𝐴 = (𝐻 Σg (𝑎 ∈ dom 𝑊1 )) ↔ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ))
5453necon3abid 2967 . . . 4 (𝜑 → (𝐴 ≠ (𝐻 Σg (𝑎 ∈ dom 𝑊1 )) ↔ ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ))
5525, 54mpbid 231 . . 3 (𝜑 → ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )
56 rexnal 3090 . . 3 (∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ↔ ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )
5755, 56sylibr 233 . 2 (𝜑 → ∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )
58 df-ne 2931 . . . 4 ((((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 ↔ ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )
59 dchrpt.g . . . . . 6 𝐺 = (DChr‘𝑁)
60 dchrpt.d . . . . . 6 𝐷 = (Base‘𝐺)
61 dchrpt.b . . . . . 6 𝐵 = (Base‘𝑍)
622adantr 479 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑁 ∈ ℕ)
631adantr 479 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐴1 )
64 dchrpt.m . . . . . 6 · = (.g𝐻)
6534adantr 479 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐴𝑈)
6614adantr 479 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑊 ∈ Word 𝑈)
6726adantr 479 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐻dom DProd 𝑆)
6835adantr 479 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → (𝐻 DProd 𝑆) = 𝑈)
69 eqid 2726 . . . . . 6 (od‘𝐻) = (od‘𝐻)
70 eqid 2726 . . . . . 6 (-1↑𝑐(2 / ((od‘𝐻)‘(𝑊𝑎)))) = (-1↑𝑐(2 / ((od‘𝐻)‘(𝑊𝑎))))
71 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑎 ∈ dom 𝑊)
72 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )
73 eqid 2726 . . . . . 6 (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ ((((𝐻dProj𝑆)‘𝑎)‘𝑢) = (𝑚 · (𝑊𝑎)) ∧ = ((-1↑𝑐(2 / ((od‘𝐻)‘(𝑊𝑎))))↑𝑚)))) = (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ ((((𝐻dProj𝑆)‘𝑎)‘𝑢) = (𝑚 · (𝑊𝑎)) ∧ = ((-1↑𝑐(2 / ((od‘𝐻)‘(𝑊𝑎))))↑𝑚))))
7459, 4, 60, 61, 19, 62, 63, 9, 10, 64, 30, 65, 66, 67, 68, 33, 69, 70, 71, 72, 73dchrptlem2 27289 . . . . 5 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
7574expr 455 . . . 4 ((𝜑𝑎 ∈ dom 𝑊) → ((((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1))
7658, 75biimtrrid 242 . . 3 ((𝜑𝑎 ∈ dom 𝑊) → (¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1))
7776rexlimdva 3145 . 2 (𝜑 → (∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1))
7857, 77mpd 15 1 (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  {crab 3420  Vcvv 3463  {csn 4624   class class class wbr 5144  cmpt 5227   × cxp 5671  dom cdm 5673  ran crn 5674  cio 6494  cfv 6544  (class class class)co 7414  Xcixp 8916   finSupp cfsupp 9396  1c1 11148  -cneg 11484   / cdiv 11910  cn 12256  2c2 12311  0cn0 12516  cz 12602  cexp 14073  Word cword 14515  Basecbs 17206  s cress 17235  0gc0g 17447   Σg cgsu 17448  Mndcmnd 18720  Grpcgrp 18921  .gcmg 19055  SubGrpcsubg 19108  odcod 19516   DProd cdprd 19987  dProjcdpj 19988  mulGrpcmgp 20111  1rcur 20158  Ringcrg 20210  CRingccrg 20211  Unitcui 20331  ℤ/nczn 21486  𝑐ccxp 26577  DChrcdchr 27256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-inf2 9675  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224  ax-pre-sup 11225  ax-addf 11226  ax-mulf 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4907  df-int 4948  df-iun 4996  df-iin 4997  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8231  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-2o 8487  df-oadd 8490  df-omul 8491  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9397  df-fi 9445  df-sup 9476  df-inf 9477  df-oi 9544  df-card 9973  df-acn 9976  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-div 11911  df-nn 12257  df-2 12319  df-3 12320  df-4 12321  df-5 12322  df-6 12323  df-7 12324  df-8 12325  df-9 12326  df-n0 12517  df-z 12603  df-dec 12722  df-uz 12867  df-q 12977  df-rp 13021  df-xneg 13138  df-xadd 13139  df-xmul 13140  df-ioo 13374  df-ioc 13375  df-ico 13376  df-icc 13377  df-fz 13531  df-fzo 13674  df-fl 13804  df-mod 13882  df-seq 14014  df-exp 14074  df-fac 14284  df-bc 14313  df-hash 14341  df-word 14516  df-shft 15065  df-cj 15097  df-re 15098  df-im 15099  df-sqrt 15233  df-abs 15234  df-limsup 15466  df-clim 15483  df-rlim 15484  df-sum 15684  df-ef 16062  df-sin 16064  df-cos 16065  df-pi 16067  df-dvds 16250  df-struct 17142  df-sets 17159  df-slot 17177  df-ndx 17189  df-base 17207  df-ress 17236  df-plusg 17272  df-mulr 17273  df-starv 17274  df-sca 17275  df-vsca 17276  df-ip 17277  df-tset 17278  df-ple 17279  df-ds 17281  df-unif 17282  df-hom 17283  df-cco 17284  df-rest 17430  df-topn 17431  df-0g 17449  df-gsum 17450  df-topgen 17451  df-pt 17452  df-prds 17455  df-xrs 17510  df-qtop 17515  df-imas 17516  df-qus 17517  df-xps 17518  df-mre 17592  df-mrc 17593  df-acs 17595  df-mgm 18626  df-sgrp 18705  df-mnd 18721  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-nsg 19112  df-eqg 19113  df-ghm 19201  df-gim 19247  df-cntz 19305  df-oppg 19334  df-od 19520  df-lsm 19628  df-pj1 19629  df-cmn 19774  df-abl 19775  df-dprd 19989  df-dpj 19990  df-mgp 20112  df-rng 20130  df-ur 20159  df-ring 20212  df-cring 20213  df-oppr 20310  df-dvdsr 20333  df-unit 20334  df-rhm 20448  df-subrng 20522  df-subrg 20547  df-lmod 20832  df-lss 20903  df-lsp 20943  df-sra 21145  df-rgmod 21146  df-lidl 21191  df-rsp 21192  df-2idl 21233  df-psmet 21329  df-xmet 21330  df-met 21331  df-bl 21332  df-mopn 21333  df-fbas 21334  df-fg 21335  df-cnfld 21338  df-zring 21431  df-zrh 21487  df-zn 21490  df-top 22882  df-topon 22899  df-topsp 22921  df-bases 22935  df-cld 23009  df-ntr 23010  df-cls 23011  df-nei 23088  df-lp 23126  df-perf 23127  df-cn 23217  df-cnp 23218  df-haus 23305  df-tx 23552  df-hmeo 23745  df-fil 23836  df-fm 23928  df-flim 23929  df-flf 23930  df-xms 24312  df-ms 24313  df-tms 24314  df-cncf 24884  df-limc 25881  df-dv 25882  df-log 26578  df-cxp 26579  df-dchr 27257
This theorem is referenced by:  dchrpt  27291
  Copyright terms: Public domain W3C validator