| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrptlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for dchrpt 27215. (Contributed by Mario Carneiro, 28-Apr-2016.) |
| Ref | Expression |
|---|---|
| dchrpt.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrpt.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchrpt.d | ⊢ 𝐷 = (Base‘𝐺) |
| dchrpt.b | ⊢ 𝐵 = (Base‘𝑍) |
| dchrpt.1 | ⊢ 1 = (1r‘𝑍) |
| dchrpt.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| dchrpt.n1 | ⊢ (𝜑 → 𝐴 ≠ 1 ) |
| dchrpt.u | ⊢ 𝑈 = (Unit‘𝑍) |
| dchrpt.h | ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) |
| dchrpt.m | ⊢ · = (.g‘𝐻) |
| dchrpt.s | ⊢ 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘)))) |
| dchrpt.au | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| dchrpt.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝑈) |
| dchrpt.2 | ⊢ (𝜑 → 𝐻dom DProd 𝑆) |
| dchrpt.3 | ⊢ (𝜑 → (𝐻 DProd 𝑆) = 𝑈) |
| Ref | Expression |
|---|---|
| dchrptlem3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchrpt.n1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 1 ) | |
| 2 | dchrpt.n | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 3 | 2 | nnnn0d 12452 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 4 | dchrpt.z | . . . . . . . . . . . 12 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 5 | 4 | zncrng 21491 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
| 6 | 3, 5 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑍 ∈ CRing) |
| 7 | crngring 20173 | . . . . . . . . . 10 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ∈ Ring) |
| 9 | dchrpt.u | . . . . . . . . . 10 ⊢ 𝑈 = (Unit‘𝑍) | |
| 10 | dchrpt.h | . . . . . . . . . 10 ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) | |
| 11 | 9, 10 | unitgrp 20311 | . . . . . . . . 9 ⊢ (𝑍 ∈ Ring → 𝐻 ∈ Grp) |
| 12 | 8, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ∈ Grp) |
| 13 | 12 | grpmndd 18869 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| 14 | dchrpt.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ Word 𝑈) | |
| 15 | 14 | dmexd 7842 | . . . . . . 7 ⊢ (𝜑 → dom 𝑊 ∈ V) |
| 16 | eqid 2733 | . . . . . . . 8 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 17 | 16 | gsumz 18754 | . . . . . . 7 ⊢ ((𝐻 ∈ Mnd ∧ dom 𝑊 ∈ V) → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g‘𝐻))) = (0g‘𝐻)) |
| 18 | 13, 15, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g‘𝐻))) = (0g‘𝐻)) |
| 19 | dchrpt.1 | . . . . . . . . . 10 ⊢ 1 = (1r‘𝑍) | |
| 20 | 9, 10, 19 | unitgrpid 20313 | . . . . . . . . 9 ⊢ (𝑍 ∈ Ring → 1 = (0g‘𝐻)) |
| 21 | 8, 20 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 1 = (0g‘𝐻)) |
| 22 | 21 | mpteq2dv 5189 | . . . . . . 7 ⊢ (𝜑 → (𝑎 ∈ dom 𝑊 ↦ 1 ) = (𝑎 ∈ dom 𝑊 ↦ (0g‘𝐻))) |
| 23 | 22 | oveq2d 7371 | . . . . . 6 ⊢ (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 )) = (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g‘𝐻)))) |
| 24 | 18, 23, 21 | 3eqtr4d 2778 | . . . . 5 ⊢ (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 )) = 1 ) |
| 25 | 1, 24 | neeqtrrd 3004 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 ))) |
| 26 | dchrpt.2 | . . . . . 6 ⊢ (𝜑 → 𝐻dom DProd 𝑆) | |
| 27 | zex 12487 | . . . . . . . . . 10 ⊢ ℤ ∈ V | |
| 28 | 27 | mptex 7166 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘))) ∈ V |
| 29 | 28 | rnex 7849 | . . . . . . . 8 ⊢ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘))) ∈ V |
| 30 | dchrpt.s | . . . . . . . 8 ⊢ 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘)))) | |
| 31 | 29, 30 | dmmpti 6633 | . . . . . . 7 ⊢ dom 𝑆 = dom 𝑊 |
| 32 | 31 | a1i 11 | . . . . . 6 ⊢ (𝜑 → dom 𝑆 = dom 𝑊) |
| 33 | eqid 2733 | . . . . . 6 ⊢ (𝐻dProj𝑆) = (𝐻dProj𝑆) | |
| 34 | dchrpt.au | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 35 | dchrpt.3 | . . . . . . 7 ⊢ (𝜑 → (𝐻 DProd 𝑆) = 𝑈) | |
| 36 | 34, 35 | eleqtrrd 2836 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (𝐻 DProd 𝑆)) |
| 37 | eqid 2733 | . . . . . 6 ⊢ {ℎ ∈ X𝑖 ∈ dom 𝑊(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐻)} = {ℎ ∈ X𝑖 ∈ dom 𝑊(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐻)} | |
| 38 | 21 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → 1 = (0g‘𝐻)) |
| 39 | 26, 32 | dprdf2 19931 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆:dom 𝑊⟶(SubGrp‘𝐻)) |
| 40 | 39 | ffvelcdmda 7026 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → (𝑆‘𝑎) ∈ (SubGrp‘𝐻)) |
| 41 | 16 | subg0cl 19057 | . . . . . . . . 9 ⊢ ((𝑆‘𝑎) ∈ (SubGrp‘𝐻) → (0g‘𝐻) ∈ (𝑆‘𝑎)) |
| 42 | 40, 41 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → (0g‘𝐻) ∈ (𝑆‘𝑎)) |
| 43 | 38, 42 | eqeltrd 2833 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → 1 ∈ (𝑆‘𝑎)) |
| 44 | 19 | fvexi 6845 | . . . . . . . . . 10 ⊢ 1 ∈ V |
| 45 | 44 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ V) |
| 46 | 15, 45 | fczfsuppd 9280 | . . . . . . . 8 ⊢ (𝜑 → (dom 𝑊 × { 1 }) finSupp 1 ) |
| 47 | fconstmpt 5683 | . . . . . . . . . 10 ⊢ (dom 𝑊 × { 1 }) = (𝑎 ∈ dom 𝑊 ↦ 1 ) | |
| 48 | 47 | eqcomi 2742 | . . . . . . . . 9 ⊢ (𝑎 ∈ dom 𝑊 ↦ 1 ) = (dom 𝑊 × { 1 }) |
| 49 | 48 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → (𝑎 ∈ dom 𝑊 ↦ 1 ) = (dom 𝑊 × { 1 })) |
| 50 | 21 | eqcomd 2739 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝐻) = 1 ) |
| 51 | 46, 49, 50 | 3brtr4d 5127 | . . . . . . 7 ⊢ (𝜑 → (𝑎 ∈ dom 𝑊 ↦ 1 ) finSupp (0g‘𝐻)) |
| 52 | 37, 26, 32, 43, 51 | dprdwd 19935 | . . . . . 6 ⊢ (𝜑 → (𝑎 ∈ dom 𝑊 ↦ 1 ) ∈ {ℎ ∈ X𝑖 ∈ dom 𝑊(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐻)}) |
| 53 | 26, 32, 33, 36, 16, 37, 52 | dpjeq 19983 | . . . . 5 ⊢ (𝜑 → (𝐴 = (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 )) ↔ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )) |
| 54 | 53 | necon3abid 2966 | . . . 4 ⊢ (𝜑 → (𝐴 ≠ (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 )) ↔ ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )) |
| 55 | 25, 54 | mpbid 232 | . . 3 ⊢ (𝜑 → ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ) |
| 56 | rexnal 3086 | . . 3 ⊢ (∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ↔ ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ) | |
| 57 | 55, 56 | sylibr 234 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ) |
| 58 | df-ne 2931 | . . . 4 ⊢ ((((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 ↔ ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ) | |
| 59 | dchrpt.g | . . . . . 6 ⊢ 𝐺 = (DChr‘𝑁) | |
| 60 | dchrpt.d | . . . . . 6 ⊢ 𝐷 = (Base‘𝐺) | |
| 61 | dchrpt.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑍) | |
| 62 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑁 ∈ ℕ) |
| 63 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐴 ≠ 1 ) |
| 64 | dchrpt.m | . . . . . 6 ⊢ · = (.g‘𝐻) | |
| 65 | 34 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐴 ∈ 𝑈) |
| 66 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑊 ∈ Word 𝑈) |
| 67 | 26 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐻dom DProd 𝑆) |
| 68 | 35 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → (𝐻 DProd 𝑆) = 𝑈) |
| 69 | eqid 2733 | . . . . . 6 ⊢ (od‘𝐻) = (od‘𝐻) | |
| 70 | eqid 2733 | . . . . . 6 ⊢ (-1↑𝑐(2 / ((od‘𝐻)‘(𝑊‘𝑎)))) = (-1↑𝑐(2 / ((od‘𝐻)‘(𝑊‘𝑎)))) | |
| 71 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑎 ∈ dom 𝑊) | |
| 72 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 ) | |
| 73 | eqid 2733 | . . . . . 6 ⊢ (𝑢 ∈ 𝑈 ↦ (℩ℎ∃𝑚 ∈ ℤ ((((𝐻dProj𝑆)‘𝑎)‘𝑢) = (𝑚 · (𝑊‘𝑎)) ∧ ℎ = ((-1↑𝑐(2 / ((od‘𝐻)‘(𝑊‘𝑎))))↑𝑚)))) = (𝑢 ∈ 𝑈 ↦ (℩ℎ∃𝑚 ∈ ℤ ((((𝐻dProj𝑆)‘𝑎)‘𝑢) = (𝑚 · (𝑊‘𝑎)) ∧ ℎ = ((-1↑𝑐(2 / ((od‘𝐻)‘(𝑊‘𝑎))))↑𝑚)))) | |
| 74 | 59, 4, 60, 61, 19, 62, 63, 9, 10, 64, 30, 65, 66, 67, 68, 33, 69, 70, 71, 72, 73 | dchrptlem2 27213 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1) |
| 75 | 74 | expr 456 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → ((((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1)) |
| 76 | 58, 75 | biimtrrid 243 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → (¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1)) |
| 77 | 76 | rexlimdva 3135 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1)) |
| 78 | 57, 77 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∀wral 3049 ∃wrex 3058 {crab 3397 Vcvv 3438 {csn 4577 class class class wbr 5095 ↦ cmpt 5176 × cxp 5619 dom cdm 5621 ran crn 5622 ℩cio 6443 ‘cfv 6489 (class class class)co 7355 Xcixp 8830 finSupp cfsupp 9255 1c1 11017 -cneg 11355 / cdiv 11784 ℕcn 12135 2c2 12190 ℕ0cn0 12391 ℤcz 12478 ↑cexp 13978 Word cword 14430 Basecbs 17130 ↾s cress 17151 0gc0g 17353 Σg cgsu 17354 Mndcmnd 18652 Grpcgrp 18856 .gcmg 18990 SubGrpcsubg 19043 odcod 19446 DProd cdprd 19917 dProjcdpj 19918 mulGrpcmgp 20068 1rcur 20109 Ringcrg 20161 CRingccrg 20162 Unitcui 20283 ℤ/nℤczn 21449 ↑𝑐ccxp 26501 DChrcdchr 27180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 ax-addf 11095 ax-mulf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-omul 8399 df-er 8631 df-ec 8633 df-qs 8637 df-map 8761 df-pm 8762 df-ixp 8831 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-fi 9305 df-sup 9336 df-inf 9337 df-oi 9406 df-card 9842 df-acn 9845 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-q 12857 df-rp 12901 df-xneg 13021 df-xadd 13022 df-xmul 13023 df-ioo 13259 df-ioc 13260 df-ico 13261 df-icc 13262 df-fz 13418 df-fzo 13565 df-fl 13706 df-mod 13784 df-seq 13919 df-exp 13979 df-fac 14191 df-bc 14220 df-hash 14248 df-word 14431 df-shft 14984 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-limsup 15388 df-clim 15405 df-rlim 15406 df-sum 15604 df-ef 15984 df-sin 15986 df-cos 15987 df-pi 15989 df-dvds 16174 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-starv 17186 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ds 17193 df-unif 17194 df-hom 17195 df-cco 17196 df-rest 17336 df-topn 17337 df-0g 17355 df-gsum 17356 df-topgen 17357 df-pt 17358 df-prds 17361 df-xrs 17416 df-qtop 17421 df-imas 17422 df-qus 17423 df-xps 17424 df-mre 17498 df-mrc 17499 df-acs 17501 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-mhm 18701 df-submnd 18702 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18991 df-subg 19046 df-nsg 19047 df-eqg 19048 df-ghm 19135 df-gim 19181 df-cntz 19239 df-oppg 19268 df-od 19450 df-lsm 19558 df-pj1 19559 df-cmn 19704 df-abl 19705 df-dprd 19919 df-dpj 19920 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-cring 20164 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-rhm 20400 df-subrng 20471 df-subrg 20495 df-lmod 20805 df-lss 20875 df-lsp 20915 df-sra 21117 df-rgmod 21118 df-lidl 21155 df-rsp 21156 df-2idl 21197 df-psmet 21293 df-xmet 21294 df-met 21295 df-bl 21296 df-mopn 21297 df-fbas 21298 df-fg 21299 df-cnfld 21302 df-zring 21394 df-zrh 21450 df-zn 21453 df-top 22819 df-topon 22836 df-topsp 22858 df-bases 22871 df-cld 22944 df-ntr 22945 df-cls 22946 df-nei 23023 df-lp 23061 df-perf 23062 df-cn 23152 df-cnp 23153 df-haus 23240 df-tx 23487 df-hmeo 23680 df-fil 23771 df-fm 23863 df-flim 23864 df-flf 23865 df-xms 24245 df-ms 24246 df-tms 24247 df-cncf 24808 df-limc 25804 df-dv 25805 df-log 26502 df-cxp 26503 df-dchr 27181 |
| This theorem is referenced by: dchrpt 27215 |
| Copyright terms: Public domain | W3C validator |