MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrptlem3 Structured version   Visualization version   GIF version

Theorem dchrptlem3 26119
Description: Lemma for dchrpt 26120. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrpt.g 𝐺 = (DChr‘𝑁)
dchrpt.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrpt.d 𝐷 = (Base‘𝐺)
dchrpt.b 𝐵 = (Base‘𝑍)
dchrpt.1 1 = (1r𝑍)
dchrpt.n (𝜑𝑁 ∈ ℕ)
dchrpt.n1 (𝜑𝐴1 )
dchrpt.u 𝑈 = (Unit‘𝑍)
dchrpt.h 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
dchrpt.m · = (.g𝐻)
dchrpt.s 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))))
dchrpt.au (𝜑𝐴𝑈)
dchrpt.w (𝜑𝑊 ∈ Word 𝑈)
dchrpt.2 (𝜑𝐻dom DProd 𝑆)
dchrpt.3 (𝜑 → (𝐻 DProd 𝑆) = 𝑈)
Assertion
Ref Expression
dchrptlem3 (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Distinct variable groups:   𝑘,𝑛,𝑥, 1   𝐴,𝑘,𝑛,𝑥   𝑥,𝐵   𝑥,𝐺   𝑘,𝐻,𝑛,𝑥   𝑥,𝑁   𝑘,𝑊,𝑛,𝑥   · ,𝑘,𝑛,𝑥   𝑆,𝑘,𝑛,𝑥   𝑘,𝑍,𝑛,𝑥   𝑥,𝐷   𝜑,𝑘,𝑛,𝑥   𝑥,𝑈
Allowed substitution hints:   𝐵(𝑘,𝑛)   𝐷(𝑘,𝑛)   𝑈(𝑘,𝑛)   𝐺(𝑘,𝑛)   𝑁(𝑘,𝑛)

Proof of Theorem dchrptlem3
Dummy variables 𝑎 𝑚 𝑢 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrpt.n1 . . . . 5 (𝜑𝐴1 )
2 dchrpt.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
32nnnn0d 12133 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
4 dchrpt.z . . . . . . . . . . . 12 𝑍 = (ℤ/nℤ‘𝑁)
54zncrng 20481 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
63, 5syl 17 . . . . . . . . . 10 (𝜑𝑍 ∈ CRing)
7 crngring 19546 . . . . . . . . . 10 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
86, 7syl 17 . . . . . . . . 9 (𝜑𝑍 ∈ Ring)
9 dchrpt.u . . . . . . . . . 10 𝑈 = (Unit‘𝑍)
10 dchrpt.h . . . . . . . . . 10 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
119, 10unitgrp 19657 . . . . . . . . 9 (𝑍 ∈ Ring → 𝐻 ∈ Grp)
128, 11syl 17 . . . . . . . 8 (𝜑𝐻 ∈ Grp)
1312grpmndd 18349 . . . . . . 7 (𝜑𝐻 ∈ Mnd)
14 dchrpt.w . . . . . . . 8 (𝜑𝑊 ∈ Word 𝑈)
1514dmexd 7672 . . . . . . 7 (𝜑 → dom 𝑊 ∈ V)
16 eqid 2734 . . . . . . . 8 (0g𝐻) = (0g𝐻)
1716gsumz 18234 . . . . . . 7 ((𝐻 ∈ Mnd ∧ dom 𝑊 ∈ V) → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g𝐻))) = (0g𝐻))
1813, 15, 17syl2anc 587 . . . . . 6 (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g𝐻))) = (0g𝐻))
19 dchrpt.1 . . . . . . . . . 10 1 = (1r𝑍)
209, 10, 19unitgrpid 19659 . . . . . . . . 9 (𝑍 ∈ Ring → 1 = (0g𝐻))
218, 20syl 17 . . . . . . . 8 (𝜑1 = (0g𝐻))
2221mpteq2dv 5140 . . . . . . 7 (𝜑 → (𝑎 ∈ dom 𝑊1 ) = (𝑎 ∈ dom 𝑊 ↦ (0g𝐻)))
2322oveq2d 7218 . . . . . 6 (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊1 )) = (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g𝐻))))
2418, 23, 213eqtr4d 2784 . . . . 5 (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊1 )) = 1 )
251, 24neeqtrrd 3009 . . . 4 (𝜑𝐴 ≠ (𝐻 Σg (𝑎 ∈ dom 𝑊1 )))
26 dchrpt.2 . . . . . 6 (𝜑𝐻dom DProd 𝑆)
27 zex 12168 . . . . . . . . . 10 ℤ ∈ V
2827mptex 7028 . . . . . . . . 9 (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) ∈ V
2928rnex 7679 . . . . . . . 8 ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) ∈ V
30 dchrpt.s . . . . . . . 8 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))))
3129, 30dmmpti 6511 . . . . . . 7 dom 𝑆 = dom 𝑊
3231a1i 11 . . . . . 6 (𝜑 → dom 𝑆 = dom 𝑊)
33 eqid 2734 . . . . . 6 (𝐻dProj𝑆) = (𝐻dProj𝑆)
34 dchrpt.au . . . . . . 7 (𝜑𝐴𝑈)
35 dchrpt.3 . . . . . . 7 (𝜑 → (𝐻 DProd 𝑆) = 𝑈)
3634, 35eleqtrrd 2837 . . . . . 6 (𝜑𝐴 ∈ (𝐻 DProd 𝑆))
37 eqid 2734 . . . . . 6 {X𝑖 ∈ dom 𝑊(𝑆𝑖) ∣ finSupp (0g𝐻)} = {X𝑖 ∈ dom 𝑊(𝑆𝑖) ∣ finSupp (0g𝐻)}
3821adantr 484 . . . . . . . 8 ((𝜑𝑎 ∈ dom 𝑊) → 1 = (0g𝐻))
3926, 32dprdf2 19366 . . . . . . . . . 10 (𝜑𝑆:dom 𝑊⟶(SubGrp‘𝐻))
4039ffvelrnda 6893 . . . . . . . . 9 ((𝜑𝑎 ∈ dom 𝑊) → (𝑆𝑎) ∈ (SubGrp‘𝐻))
4116subg0cl 18523 . . . . . . . . 9 ((𝑆𝑎) ∈ (SubGrp‘𝐻) → (0g𝐻) ∈ (𝑆𝑎))
4240, 41syl 17 . . . . . . . 8 ((𝜑𝑎 ∈ dom 𝑊) → (0g𝐻) ∈ (𝑆𝑎))
4338, 42eqeltrd 2834 . . . . . . 7 ((𝜑𝑎 ∈ dom 𝑊) → 1 ∈ (𝑆𝑎))
4419fvexi 6720 . . . . . . . . . 10 1 ∈ V
4544a1i 11 . . . . . . . . 9 (𝜑1 ∈ V)
4615, 45fczfsuppd 8992 . . . . . . . 8 (𝜑 → (dom 𝑊 × { 1 }) finSupp 1 )
47 fconstmpt 5600 . . . . . . . . . 10 (dom 𝑊 × { 1 }) = (𝑎 ∈ dom 𝑊1 )
4847eqcomi 2743 . . . . . . . . 9 (𝑎 ∈ dom 𝑊1 ) = (dom 𝑊 × { 1 })
4948a1i 11 . . . . . . . 8 (𝜑 → (𝑎 ∈ dom 𝑊1 ) = (dom 𝑊 × { 1 }))
5021eqcomd 2740 . . . . . . . 8 (𝜑 → (0g𝐻) = 1 )
5146, 49, 503brtr4d 5075 . . . . . . 7 (𝜑 → (𝑎 ∈ dom 𝑊1 ) finSupp (0g𝐻))
5237, 26, 32, 43, 51dprdwd 19370 . . . . . 6 (𝜑 → (𝑎 ∈ dom 𝑊1 ) ∈ {X𝑖 ∈ dom 𝑊(𝑆𝑖) ∣ finSupp (0g𝐻)})
5326, 32, 33, 36, 16, 37, 52dpjeq 19418 . . . . 5 (𝜑 → (𝐴 = (𝐻 Σg (𝑎 ∈ dom 𝑊1 )) ↔ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ))
5453necon3abid 2971 . . . 4 (𝜑 → (𝐴 ≠ (𝐻 Σg (𝑎 ∈ dom 𝑊1 )) ↔ ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ))
5525, 54mpbid 235 . . 3 (𝜑 → ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )
56 rexnal 3153 . . 3 (∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ↔ ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )
5755, 56sylibr 237 . 2 (𝜑 → ∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )
58 df-ne 2936 . . . 4 ((((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 ↔ ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )
59 dchrpt.g . . . . . 6 𝐺 = (DChr‘𝑁)
60 dchrpt.d . . . . . 6 𝐷 = (Base‘𝐺)
61 dchrpt.b . . . . . 6 𝐵 = (Base‘𝑍)
622adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑁 ∈ ℕ)
631adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐴1 )
64 dchrpt.m . . . . . 6 · = (.g𝐻)
6534adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐴𝑈)
6614adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑊 ∈ Word 𝑈)
6726adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐻dom DProd 𝑆)
6835adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → (𝐻 DProd 𝑆) = 𝑈)
69 eqid 2734 . . . . . 6 (od‘𝐻) = (od‘𝐻)
70 eqid 2734 . . . . . 6 (-1↑𝑐(2 / ((od‘𝐻)‘(𝑊𝑎)))) = (-1↑𝑐(2 / ((od‘𝐻)‘(𝑊𝑎))))
71 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑎 ∈ dom 𝑊)
72 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )
73 eqid 2734 . . . . . 6 (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ ((((𝐻dProj𝑆)‘𝑎)‘𝑢) = (𝑚 · (𝑊𝑎)) ∧ = ((-1↑𝑐(2 / ((od‘𝐻)‘(𝑊𝑎))))↑𝑚)))) = (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ ((((𝐻dProj𝑆)‘𝑎)‘𝑢) = (𝑚 · (𝑊𝑎)) ∧ = ((-1↑𝑐(2 / ((od‘𝐻)‘(𝑊𝑎))))↑𝑚))))
7459, 4, 60, 61, 19, 62, 63, 9, 10, 64, 30, 65, 66, 67, 68, 33, 69, 70, 71, 72, 73dchrptlem2 26118 . . . . 5 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
7574expr 460 . . . 4 ((𝜑𝑎 ∈ dom 𝑊) → ((((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1))
7658, 75syl5bir 246 . . 3 ((𝜑𝑎 ∈ dom 𝑊) → (¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1))
7776rexlimdva 3196 . 2 (𝜑 → (∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1))
7857, 77mpd 15 1 (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2935  wral 3054  wrex 3055  {crab 3058  Vcvv 3401  {csn 4531   class class class wbr 5043  cmpt 5124   × cxp 5538  dom cdm 5540  ran crn 5541  cio 6325  cfv 6369  (class class class)co 7202  Xcixp 8567   finSupp cfsupp 8974  1c1 10713  -cneg 11046   / cdiv 11472  cn 11813  2c2 11868  0cn0 12073  cz 12159  cexp 13618  Word cword 14052  Basecbs 16684  s cress 16685  0gc0g 16916   Σg cgsu 16917  Mndcmnd 18145  Grpcgrp 18337  .gcmg 18460  SubGrpcsubg 18509  odcod 18888   DProd cdprd 19352  dProjcdpj 19353  mulGrpcmgp 19476  1rcur 19488  Ringcrg 19534  CRingccrg 19535  Unitcui 19629  ℤ/nczn 20441  𝑐ccxp 25416  DChrcdchr 26085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790  ax-addf 10791  ax-mulf 10792
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-tpos 7957  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-oadd 8195  df-omul 8196  df-er 8380  df-ec 8382  df-qs 8386  df-map 8499  df-pm 8500  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-fi 9016  df-sup 9047  df-inf 9048  df-oi 9115  df-card 9538  df-acn 9541  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-ioo 12922  df-ioc 12923  df-ico 12924  df-icc 12925  df-fz 13079  df-fzo 13222  df-fl 13350  df-mod 13426  df-seq 13558  df-exp 13619  df-fac 13823  df-bc 13852  df-hash 13880  df-word 14053  df-shft 14613  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-limsup 15015  df-clim 15032  df-rlim 15033  df-sum 15233  df-ef 15610  df-sin 15612  df-cos 15613  df-pi 15615  df-dvds 15797  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-starv 16782  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-hom 16791  df-cco 16792  df-rest 16899  df-topn 16900  df-0g 16918  df-gsum 16919  df-topgen 16920  df-pt 16921  df-prds 16924  df-xrs 16979  df-qtop 16984  df-imas 16985  df-qus 16986  df-xps 16987  df-mre 17061  df-mrc 17062  df-acs 17064  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-mhm 18190  df-submnd 18191  df-grp 18340  df-minusg 18341  df-sbg 18342  df-mulg 18461  df-subg 18512  df-nsg 18513  df-eqg 18514  df-ghm 18592  df-gim 18635  df-cntz 18683  df-oppg 18710  df-od 18892  df-lsm 18997  df-pj1 18998  df-cmn 19144  df-abl 19145  df-dprd 19354  df-dpj 19355  df-mgp 19477  df-ur 19489  df-ring 19536  df-cring 19537  df-oppr 19613  df-dvdsr 19631  df-unit 19632  df-rnghom 19707  df-subrg 19770  df-lmod 19873  df-lss 19941  df-lsp 19981  df-sra 20181  df-rgmod 20182  df-lidl 20183  df-rsp 20184  df-2idl 20242  df-psmet 20327  df-xmet 20328  df-met 20329  df-bl 20330  df-mopn 20331  df-fbas 20332  df-fg 20333  df-cnfld 20336  df-zring 20408  df-zrh 20442  df-zn 20445  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-cld 21888  df-ntr 21889  df-cls 21890  df-nei 21967  df-lp 22005  df-perf 22006  df-cn 22096  df-cnp 22097  df-haus 22184  df-tx 22431  df-hmeo 22624  df-fil 22715  df-fm 22807  df-flim 22808  df-flf 22809  df-xms 23190  df-ms 23191  df-tms 23192  df-cncf 23747  df-limc 24735  df-dv 24736  df-log 25417  df-cxp 25418  df-dchr 26086
This theorem is referenced by:  dchrpt  26120
  Copyright terms: Public domain W3C validator