Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoimbllem Structured version   Visualization version   GIF version

Theorem hoimbllem 46590
Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoimbllem.x (𝜑𝑋 ∈ Fin)
hoimbllem.n (𝜑𝑋 ≠ ∅)
hoimbllem.s 𝑆 = dom (voln‘𝑋)
hoimbllem.a (𝜑𝐴:𝑋⟶ℝ)
hoimbllem.b (𝜑𝐵:𝑋⟶ℝ)
hoimbllem.h 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
Assertion
Ref Expression
hoimbllem (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑖,𝑙,𝑥,𝑦   𝐵,𝑖,𝑙,𝑥,𝑦   𝑖,𝐻,𝑙,𝑥,𝑦   𝑆,𝑖   𝑖,𝑋,𝑙,𝑥,𝑦   𝜑,𝑖,𝑙,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑙)

Proof of Theorem hoimbllem
StepHypRef Expression
1 hoimbllem.x . . 3 (𝜑𝑋 ∈ Fin)
2 hoimbllem.n . . 3 (𝜑𝑋 ≠ ∅)
3 hoimbllem.a . . 3 (𝜑𝐴:𝑋⟶ℝ)
4 hoimbllem.b . . 3 (𝜑𝐵:𝑋⟶ℝ)
5 hoimbllem.h . . 3 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
61, 2, 3, 4, 5hspdifhsp 46576 . 2 (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
71vonmea 46534 . . . 4 (𝜑 → (voln‘𝑋) ∈ Meas)
8 hoimbllem.s . . . 4 𝑆 = dom (voln‘𝑋)
97, 8dmmeasal 46412 . . 3 (𝜑𝑆 ∈ SAlg)
10 fict 9676 . . . 4 (𝑋 ∈ Fin → 𝑋 ≼ ω)
111, 10syl 17 . . 3 (𝜑𝑋 ≼ ω)
129adantr 480 . . . 4 ((𝜑𝑖𝑋) → 𝑆 ∈ SAlg)
131adantr 480 . . . . . 6 ((𝜑𝑖𝑋) → 𝑋 ∈ Fin)
14 simpr 484 . . . . . 6 ((𝜑𝑖𝑋) → 𝑖𝑋)
154adantr 480 . . . . . . 7 ((𝜑𝑖𝑋) → 𝐵:𝑋⟶ℝ)
1615, 14ffvelcdmd 7086 . . . . . 6 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
175, 13, 14, 16hspmbl 46589 . . . . 5 ((𝜑𝑖𝑋) → (𝑖(𝐻𝑋)(𝐵𝑖)) ∈ dom (voln‘𝑋))
188eqcomi 2743 . . . . . 6 dom (voln‘𝑋) = 𝑆
1918a1i 11 . . . . 5 ((𝜑𝑖𝑋) → dom (voln‘𝑋) = 𝑆)
2017, 19eleqtrd 2835 . . . 4 ((𝜑𝑖𝑋) → (𝑖(𝐻𝑋)(𝐵𝑖)) ∈ 𝑆)
213ffvelcdmda 7085 . . . . . 6 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
225, 13, 14, 21hspmbl 46589 . . . . 5 ((𝜑𝑖𝑋) → (𝑖(𝐻𝑋)(𝐴𝑖)) ∈ dom (voln‘𝑋))
2322, 19eleqtrd 2835 . . . 4 ((𝜑𝑖𝑋) → (𝑖(𝐻𝑋)(𝐴𝑖)) ∈ 𝑆)
24 saldifcl2 46288 . . . 4 ((𝑆 ∈ SAlg ∧ (𝑖(𝐻𝑋)(𝐵𝑖)) ∈ 𝑆 ∧ (𝑖(𝐻𝑋)(𝐴𝑖)) ∈ 𝑆) → ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∈ 𝑆)
2512, 20, 23, 24syl3anc 1372 . . 3 ((𝜑𝑖𝑋) → ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∈ 𝑆)
269, 11, 2, 25saliincl 46287 . 2 (𝜑 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∈ 𝑆)
276, 26eqeltrd 2833 1 (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  cdif 3930  c0 4315  ifcif 4507   ciin 4974   class class class wbr 5125  cmpt 5207  dom cdm 5667  wf 6538  cfv 6542  (class class class)co 7414  cmpo 7416  ωcom 7870  Xcixp 8920  cdom 8966  Fincfn 8968  cr 11137  -∞cmnf 11276  (,)cioo 13370  [,)cico 13372  SAlgcsalg 46268  volncvoln 46498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-inf2 9664  ax-cc 10458  ax-ac2 10486  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-iin 4976  df-disj 5093  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-oadd 8493  df-omul 8494  df-er 8728  df-map 8851  df-pm 8852  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fi 9434  df-sup 9465  df-inf 9466  df-oi 9533  df-dju 9924  df-card 9962  df-acn 9965  df-ac 10139  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-z 12598  df-uz 12862  df-q 12974  df-rp 13018  df-xneg 13137  df-xadd 13138  df-xmul 13139  df-ioo 13374  df-ico 13376  df-icc 13377  df-fz 13531  df-fzo 13678  df-fl 13815  df-seq 14026  df-exp 14086  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-rlim 15508  df-sum 15706  df-prod 15923  df-rest 17443  df-topgen 17464  df-psmet 21323  df-xmet 21324  df-met 21325  df-bl 21326  df-mopn 21327  df-top 22867  df-topon 22884  df-bases 22919  df-cmp 23360  df-ovol 25454  df-vol 25455  df-salg 46269  df-sumge0 46323  df-mea 46410  df-ome 46450  df-caragen 46452  df-ovoln 46497  df-voln 46499
This theorem is referenced by:  hoimbl  46591
  Copyright terms: Public domain W3C validator