Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoimbllem Structured version   Visualization version   GIF version

Theorem hoimbllem 46601
Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoimbllem.x (𝜑𝑋 ∈ Fin)
hoimbllem.n (𝜑𝑋 ≠ ∅)
hoimbllem.s 𝑆 = dom (voln‘𝑋)
hoimbllem.a (𝜑𝐴:𝑋⟶ℝ)
hoimbllem.b (𝜑𝐵:𝑋⟶ℝ)
hoimbllem.h 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
Assertion
Ref Expression
hoimbllem (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑖,𝑙,𝑥,𝑦   𝐵,𝑖,𝑙,𝑥,𝑦   𝑖,𝐻,𝑙,𝑥,𝑦   𝑆,𝑖   𝑖,𝑋,𝑙,𝑥,𝑦   𝜑,𝑖,𝑙,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑙)

Proof of Theorem hoimbllem
StepHypRef Expression
1 hoimbllem.x . . 3 (𝜑𝑋 ∈ Fin)
2 hoimbllem.n . . 3 (𝜑𝑋 ≠ ∅)
3 hoimbllem.a . . 3 (𝜑𝐴:𝑋⟶ℝ)
4 hoimbllem.b . . 3 (𝜑𝐵:𝑋⟶ℝ)
5 hoimbllem.h . . 3 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
61, 2, 3, 4, 5hspdifhsp 46587 . 2 (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
71vonmea 46545 . . . 4 (𝜑 → (voln‘𝑋) ∈ Meas)
8 hoimbllem.s . . . 4 𝑆 = dom (voln‘𝑋)
97, 8dmmeasal 46423 . . 3 (𝜑𝑆 ∈ SAlg)
10 fict 9582 . . . 4 (𝑋 ∈ Fin → 𝑋 ≼ ω)
111, 10syl 17 . . 3 (𝜑𝑋 ≼ ω)
129adantr 480 . . . 4 ((𝜑𝑖𝑋) → 𝑆 ∈ SAlg)
131adantr 480 . . . . . 6 ((𝜑𝑖𝑋) → 𝑋 ∈ Fin)
14 simpr 484 . . . . . 6 ((𝜑𝑖𝑋) → 𝑖𝑋)
154adantr 480 . . . . . . 7 ((𝜑𝑖𝑋) → 𝐵:𝑋⟶ℝ)
1615, 14ffvelcdmd 7039 . . . . . 6 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
175, 13, 14, 16hspmbl 46600 . . . . 5 ((𝜑𝑖𝑋) → (𝑖(𝐻𝑋)(𝐵𝑖)) ∈ dom (voln‘𝑋))
188eqcomi 2738 . . . . . 6 dom (voln‘𝑋) = 𝑆
1918a1i 11 . . . . 5 ((𝜑𝑖𝑋) → dom (voln‘𝑋) = 𝑆)
2017, 19eleqtrd 2830 . . . 4 ((𝜑𝑖𝑋) → (𝑖(𝐻𝑋)(𝐵𝑖)) ∈ 𝑆)
213ffvelcdmda 7038 . . . . . 6 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
225, 13, 14, 21hspmbl 46600 . . . . 5 ((𝜑𝑖𝑋) → (𝑖(𝐻𝑋)(𝐴𝑖)) ∈ dom (voln‘𝑋))
2322, 19eleqtrd 2830 . . . 4 ((𝜑𝑖𝑋) → (𝑖(𝐻𝑋)(𝐴𝑖)) ∈ 𝑆)
24 saldifcl2 46299 . . . 4 ((𝑆 ∈ SAlg ∧ (𝑖(𝐻𝑋)(𝐵𝑖)) ∈ 𝑆 ∧ (𝑖(𝐻𝑋)(𝐴𝑖)) ∈ 𝑆) → ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∈ 𝑆)
2512, 20, 23, 24syl3anc 1373 . . 3 ((𝜑𝑖𝑋) → ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∈ 𝑆)
269, 11, 2, 25saliincl 46298 . 2 (𝜑 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∈ 𝑆)
276, 26eqeltrd 2828 1 (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3908  c0 4292  ifcif 4484   ciin 4952   class class class wbr 5102  cmpt 5183  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  ωcom 7822  Xcixp 8847  cdom 8893  Fincfn 8895  cr 11043  -∞cmnf 11182  (,)cioo 13282  [,)cico 13284  SAlgcsalg 46279  volncvoln 46509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-prod 15846  df-rest 17361  df-topgen 17382  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-top 22757  df-topon 22774  df-bases 22809  df-cmp 23250  df-ovol 25341  df-vol 25342  df-salg 46280  df-sumge0 46334  df-mea 46421  df-ome 46461  df-caragen 46463  df-ovoln 46508  df-voln 46510
This theorem is referenced by:  hoimbl  46602
  Copyright terms: Public domain W3C validator