![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoimbllem | Structured version Visualization version GIF version |
Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoimbllem.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
hoimbllem.n | ⊢ (𝜑 → 𝑋 ≠ ∅) |
hoimbllem.s | ⊢ 𝑆 = dom (voln‘𝑋) |
hoimbllem.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
hoimbllem.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
hoimbllem.h | ⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) |
Ref | Expression |
---|---|
hoimbllem | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoimbllem.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
2 | hoimbllem.n | . . 3 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
3 | hoimbllem.a | . . 3 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
4 | hoimbllem.b | . . 3 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
5 | hoimbllem.h | . . 3 ⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) | |
6 | 1, 2, 3, 4, 5 | hspdifhsp 41622 | . 2 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = ∩ 𝑖 ∈ 𝑋 ((𝑖(𝐻‘𝑋)(𝐵‘𝑖)) ∖ (𝑖(𝐻‘𝑋)(𝐴‘𝑖)))) |
7 | 1 | vonmea 41580 | . . . 4 ⊢ (𝜑 → (voln‘𝑋) ∈ Meas) |
8 | hoimbllem.s | . . . 4 ⊢ 𝑆 = dom (voln‘𝑋) | |
9 | 7, 8 | dmmeasal 41458 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
10 | fict 8834 | . . . 4 ⊢ (𝑋 ∈ Fin → 𝑋 ≼ ω) | |
11 | 1, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ≼ ω) |
12 | 9 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → 𝑆 ∈ SAlg) |
13 | 1 | adantr 474 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → 𝑋 ∈ Fin) |
14 | simpr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → 𝑖 ∈ 𝑋) | |
15 | 4 | adantr 474 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → 𝐵:𝑋⟶ℝ) |
16 | 15, 14 | ffvelrnd 6614 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐵‘𝑖) ∈ ℝ) |
17 | 5, 13, 14, 16 | hspmbl 41635 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑖(𝐻‘𝑋)(𝐵‘𝑖)) ∈ dom (voln‘𝑋)) |
18 | 8 | eqcomi 2834 | . . . . . 6 ⊢ dom (voln‘𝑋) = 𝑆 |
19 | 18 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → dom (voln‘𝑋) = 𝑆) |
20 | 17, 19 | eleqtrd 2908 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑖(𝐻‘𝑋)(𝐵‘𝑖)) ∈ 𝑆) |
21 | 3 | ffvelrnda 6613 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐴‘𝑖) ∈ ℝ) |
22 | 5, 13, 14, 21 | hspmbl 41635 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑖(𝐻‘𝑋)(𝐴‘𝑖)) ∈ dom (voln‘𝑋)) |
23 | 22, 19 | eleqtrd 2908 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑖(𝐻‘𝑋)(𝐴‘𝑖)) ∈ 𝑆) |
24 | saldifcl2 41335 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ (𝑖(𝐻‘𝑋)(𝐵‘𝑖)) ∈ 𝑆 ∧ (𝑖(𝐻‘𝑋)(𝐴‘𝑖)) ∈ 𝑆) → ((𝑖(𝐻‘𝑋)(𝐵‘𝑖)) ∖ (𝑖(𝐻‘𝑋)(𝐴‘𝑖))) ∈ 𝑆) | |
25 | 12, 20, 23, 24 | syl3anc 1494 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((𝑖(𝐻‘𝑋)(𝐵‘𝑖)) ∖ (𝑖(𝐻‘𝑋)(𝐴‘𝑖))) ∈ 𝑆) |
26 | 9, 11, 2, 25 | saliincl 41334 | . 2 ⊢ (𝜑 → ∩ 𝑖 ∈ 𝑋 ((𝑖(𝐻‘𝑋)(𝐵‘𝑖)) ∖ (𝑖(𝐻‘𝑋)(𝐴‘𝑖))) ∈ 𝑆) |
27 | 6, 26 | eqeltrd 2906 | 1 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ∖ cdif 3795 ∅c0 4146 ifcif 4308 ∩ ciin 4743 class class class wbr 4875 ↦ cmpt 4954 dom cdm 5346 ⟶wf 6123 ‘cfv 6127 (class class class)co 6910 ↦ cmpt2 6912 ωcom 7331 Xcixp 8181 ≼ cdom 8226 Fincfn 8228 ℝcr 10258 -∞cmnf 10396 (,)cioo 12470 [,)cico 12472 SAlgcsalg 41317 volncvoln 41544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-cc 9579 ax-ac2 9607 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 ax-addf 10338 ax-mulf 10339 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-iin 4745 df-disj 4844 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-of 7162 df-om 7332 df-1st 7433 df-2nd 7434 df-tpos 7622 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-2o 7832 df-oadd 7835 df-omul 7836 df-er 8014 df-map 8129 df-pm 8130 df-ixp 8182 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-fi 8592 df-sup 8623 df-inf 8624 df-oi 8691 df-card 9085 df-acn 9088 df-ac 9259 df-cda 9312 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-q 12079 df-rp 12120 df-xneg 12239 df-xadd 12240 df-xmul 12241 df-ioo 12474 df-ico 12476 df-icc 12477 df-fz 12627 df-fzo 12768 df-fl 12895 df-seq 13103 df-exp 13162 df-hash 13418 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-clim 14603 df-rlim 14604 df-sum 14801 df-prod 15016 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-plusg 16325 df-mulr 16326 df-starv 16327 df-tset 16331 df-ple 16332 df-ds 16334 df-unif 16335 df-rest 16443 df-0g 16462 df-topgen 16464 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-grp 17786 df-minusg 17787 df-subg 17949 df-cmn 18555 df-abl 18556 df-mgp 18851 df-ur 18863 df-ring 18910 df-cring 18911 df-oppr 18984 df-dvdsr 19002 df-unit 19003 df-invr 19033 df-dvr 19044 df-drng 19112 df-psmet 20105 df-xmet 20106 df-met 20107 df-bl 20108 df-mopn 20109 df-cnfld 20114 df-top 21076 df-topon 21093 df-bases 21128 df-cmp 21568 df-ovol 23637 df-vol 23638 df-salg 41318 df-sumge0 41369 df-mea 41456 df-ome 41496 df-caragen 41498 df-ovoln 41543 df-voln 41545 |
This theorem is referenced by: hoimbl 41637 |
Copyright terms: Public domain | W3C validator |