| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hoimbllem | Structured version Visualization version GIF version | ||
| Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| hoimbllem.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| hoimbllem.n | ⊢ (𝜑 → 𝑋 ≠ ∅) |
| hoimbllem.s | ⊢ 𝑆 = dom (voln‘𝑋) |
| hoimbllem.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| hoimbllem.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
| hoimbllem.h | ⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) |
| Ref | Expression |
|---|---|
| hoimbllem | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoimbllem.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 2 | hoimbllem.n | . . 3 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
| 3 | hoimbllem.a | . . 3 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
| 4 | hoimbllem.b | . . 3 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
| 5 | hoimbllem.h | . . 3 ⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) | |
| 6 | 1, 2, 3, 4, 5 | hspdifhsp 46597 | . 2 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = ∩ 𝑖 ∈ 𝑋 ((𝑖(𝐻‘𝑋)(𝐵‘𝑖)) ∖ (𝑖(𝐻‘𝑋)(𝐴‘𝑖)))) |
| 7 | 1 | vonmea 46555 | . . . 4 ⊢ (𝜑 → (voln‘𝑋) ∈ Meas) |
| 8 | hoimbllem.s | . . . 4 ⊢ 𝑆 = dom (voln‘𝑋) | |
| 9 | 7, 8 | dmmeasal 46433 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 10 | fict 9549 | . . . 4 ⊢ (𝑋 ∈ Fin → 𝑋 ≼ ω) | |
| 11 | 1, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ≼ ω) |
| 12 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → 𝑆 ∈ SAlg) |
| 13 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → 𝑋 ∈ Fin) |
| 14 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → 𝑖 ∈ 𝑋) | |
| 15 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → 𝐵:𝑋⟶ℝ) |
| 16 | 15, 14 | ffvelcdmd 7019 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐵‘𝑖) ∈ ℝ) |
| 17 | 5, 13, 14, 16 | hspmbl 46610 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑖(𝐻‘𝑋)(𝐵‘𝑖)) ∈ dom (voln‘𝑋)) |
| 18 | 8 | eqcomi 2738 | . . . . . 6 ⊢ dom (voln‘𝑋) = 𝑆 |
| 19 | 18 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → dom (voln‘𝑋) = 𝑆) |
| 20 | 17, 19 | eleqtrd 2830 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑖(𝐻‘𝑋)(𝐵‘𝑖)) ∈ 𝑆) |
| 21 | 3 | ffvelcdmda 7018 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐴‘𝑖) ∈ ℝ) |
| 22 | 5, 13, 14, 21 | hspmbl 46610 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑖(𝐻‘𝑋)(𝐴‘𝑖)) ∈ dom (voln‘𝑋)) |
| 23 | 22, 19 | eleqtrd 2830 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑖(𝐻‘𝑋)(𝐴‘𝑖)) ∈ 𝑆) |
| 24 | saldifcl2 46309 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ (𝑖(𝐻‘𝑋)(𝐵‘𝑖)) ∈ 𝑆 ∧ (𝑖(𝐻‘𝑋)(𝐴‘𝑖)) ∈ 𝑆) → ((𝑖(𝐻‘𝑋)(𝐵‘𝑖)) ∖ (𝑖(𝐻‘𝑋)(𝐴‘𝑖))) ∈ 𝑆) | |
| 25 | 12, 20, 23, 24 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((𝑖(𝐻‘𝑋)(𝐵‘𝑖)) ∖ (𝑖(𝐻‘𝑋)(𝐴‘𝑖))) ∈ 𝑆) |
| 26 | 9, 11, 2, 25 | saliincl 46308 | . 2 ⊢ (𝜑 → ∩ 𝑖 ∈ 𝑋 ((𝑖(𝐻‘𝑋)(𝐵‘𝑖)) ∖ (𝑖(𝐻‘𝑋)(𝐴‘𝑖))) ∈ 𝑆) |
| 27 | 6, 26 | eqeltrd 2828 | 1 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 ∅c0 4284 ifcif 4476 ∩ ciin 4942 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 ωcom 7799 Xcixp 8824 ≼ cdom 8870 Fincfn 8872 ℝcr 11008 -∞cmnf 11147 (,)cioo 13248 [,)cico 13250 SAlgcsalg 46289 volncvoln 46519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-ac2 10357 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-acn 9838 df-ac 10010 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-prod 15811 df-rest 17326 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-top 22779 df-topon 22796 df-bases 22831 df-cmp 23272 df-ovol 25363 df-vol 25364 df-salg 46290 df-sumge0 46344 df-mea 46431 df-ome 46471 df-caragen 46473 df-ovoln 46518 df-voln 46520 |
| This theorem is referenced by: hoimbl 46612 |
| Copyright terms: Public domain | W3C validator |