![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > meadif | Structured version Visualization version GIF version |
Description: The measure of the difference of two sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
meadif.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meadif.a | ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) |
meadif.r | ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) |
meadif.b | ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) |
meadif.s | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
meadif | ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) = ((𝑀‘𝐴) − (𝑀‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meadif.s | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
2 | undif 4505 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) | |
3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) |
4 | 3 | eqcomd 2746 | . . . 4 ⊢ (𝜑 → 𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵))) |
5 | 4 | fveq2d 6924 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) = (𝑀‘(𝐵 ∪ (𝐴 ∖ 𝐵)))) |
6 | meadif.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
7 | eqid 2740 | . . . 4 ⊢ dom 𝑀 = dom 𝑀 | |
8 | meadif.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) | |
9 | 6, 7 | dmmeasal 46373 | . . . . 5 ⊢ (𝜑 → dom 𝑀 ∈ SAlg) |
10 | meadif.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) | |
11 | saldifcl2 46249 | . . . . 5 ⊢ ((dom 𝑀 ∈ SAlg ∧ 𝐴 ∈ dom 𝑀 ∧ 𝐵 ∈ dom 𝑀) → (𝐴 ∖ 𝐵) ∈ dom 𝑀) | |
12 | 9, 10, 8, 11 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ dom 𝑀) |
13 | disjdif 4495 | . . . . 5 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅ | |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅) |
15 | meadif.r | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) | |
16 | 6, 10, 15, 1, 8 | meassre 46398 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ) |
17 | difssd 4160 | . . . . 5 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) | |
18 | 6, 10, 15, 17, 12 | meassre 46398 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) ∈ ℝ) |
19 | 6, 7, 8, 12, 14, 16, 18 | meadjunre 46397 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((𝑀‘𝐵) + (𝑀‘(𝐴 ∖ 𝐵)))) |
20 | 5, 19 | eqtr2d 2781 | . 2 ⊢ (𝜑 → ((𝑀‘𝐵) + (𝑀‘(𝐴 ∖ 𝐵))) = (𝑀‘𝐴)) |
21 | 16 | recnd 11318 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℂ) |
22 | 18 | recnd 11318 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) ∈ ℂ) |
23 | 15 | recnd 11318 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℂ) |
24 | 21, 22, 23 | addrsub 11707 | . 2 ⊢ (𝜑 → (((𝑀‘𝐵) + (𝑀‘(𝐴 ∖ 𝐵))) = (𝑀‘𝐴) ↔ (𝑀‘(𝐴 ∖ 𝐵)) = ((𝑀‘𝐴) − (𝑀‘𝐵)))) |
25 | 20, 24 | mpbid 232 | 1 ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) = ((𝑀‘𝐴) − (𝑀‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 + caddc 11187 − cmin 11520 SAlgcsalg 46229 Meascmea 46370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-xadd 13176 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-salg 46230 df-sumge0 46284 df-mea 46371 |
This theorem is referenced by: meaiininclem 46407 |
Copyright terms: Public domain | W3C validator |