![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > meadif | Structured version Visualization version GIF version |
Description: The measure of the difference of two sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
meadif.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meadif.a | ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) |
meadif.r | ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) |
meadif.b | ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) |
meadif.s | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
meadif | ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) = ((𝑀‘𝐴) − (𝑀‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meadif.s | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
2 | undif 4483 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) | |
3 | 1, 2 | sylib 217 | . . . . 5 ⊢ (𝜑 → (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) |
4 | 3 | eqcomd 2731 | . . . 4 ⊢ (𝜑 → 𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵))) |
5 | 4 | fveq2d 6900 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) = (𝑀‘(𝐵 ∪ (𝐴 ∖ 𝐵)))) |
6 | meadif.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
7 | eqid 2725 | . . . 4 ⊢ dom 𝑀 = dom 𝑀 | |
8 | meadif.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) | |
9 | 6, 7 | dmmeasal 45975 | . . . . 5 ⊢ (𝜑 → dom 𝑀 ∈ SAlg) |
10 | meadif.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) | |
11 | saldifcl2 45851 | . . . . 5 ⊢ ((dom 𝑀 ∈ SAlg ∧ 𝐴 ∈ dom 𝑀 ∧ 𝐵 ∈ dom 𝑀) → (𝐴 ∖ 𝐵) ∈ dom 𝑀) | |
12 | 9, 10, 8, 11 | syl3anc 1368 | . . . 4 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ dom 𝑀) |
13 | disjdif 4473 | . . . . 5 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅ | |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅) |
15 | meadif.r | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) | |
16 | 6, 10, 15, 1, 8 | meassre 46000 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ) |
17 | difssd 4129 | . . . . 5 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) | |
18 | 6, 10, 15, 17, 12 | meassre 46000 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) ∈ ℝ) |
19 | 6, 7, 8, 12, 14, 16, 18 | meadjunre 45999 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((𝑀‘𝐵) + (𝑀‘(𝐴 ∖ 𝐵)))) |
20 | 5, 19 | eqtr2d 2766 | . 2 ⊢ (𝜑 → ((𝑀‘𝐵) + (𝑀‘(𝐴 ∖ 𝐵))) = (𝑀‘𝐴)) |
21 | 16 | recnd 11274 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℂ) |
22 | 18 | recnd 11274 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) ∈ ℂ) |
23 | 15 | recnd 11274 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℂ) |
24 | 21, 22, 23 | addrsub 11663 | . 2 ⊢ (𝜑 → (((𝑀‘𝐵) + (𝑀‘(𝐴 ∖ 𝐵))) = (𝑀‘𝐴) ↔ (𝑀‘(𝐴 ∖ 𝐵)) = ((𝑀‘𝐴) − (𝑀‘𝐵)))) |
25 | 20, 24 | mpbid 231 | 1 ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) = ((𝑀‘𝐴) − (𝑀‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∖ cdif 3941 ∪ cun 3942 ∩ cin 3943 ⊆ wss 3944 ∅c0 4322 dom cdm 5678 ‘cfv 6549 (class class class)co 7419 ℝcr 11139 + caddc 11143 − cmin 11476 SAlgcsalg 45831 Meascmea 45972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-disj 5115 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-xadd 13128 df-ico 13365 df-icc 13366 df-fz 13520 df-fzo 13663 df-seq 14003 df-exp 14063 df-hash 14326 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 df-sum 15669 df-salg 45832 df-sumge0 45886 df-mea 45973 |
This theorem is referenced by: meaiininclem 46009 |
Copyright terms: Public domain | W3C validator |