| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meadif | Structured version Visualization version GIF version | ||
| Description: The measure of the difference of two sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| meadif.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
| meadif.a | ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) |
| meadif.r | ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) |
| meadif.b | ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) |
| meadif.s | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| meadif | ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) = ((𝑀‘𝐴) − (𝑀‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meadif.s | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 2 | undif 4435 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) | |
| 3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) |
| 4 | 3 | eqcomd 2735 | . . . 4 ⊢ (𝜑 → 𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵))) |
| 5 | 4 | fveq2d 6830 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) = (𝑀‘(𝐵 ∪ (𝐴 ∖ 𝐵)))) |
| 6 | meadif.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 7 | eqid 2729 | . . . 4 ⊢ dom 𝑀 = dom 𝑀 | |
| 8 | meadif.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) | |
| 9 | 6, 7 | dmmeasal 46453 | . . . . 5 ⊢ (𝜑 → dom 𝑀 ∈ SAlg) |
| 10 | meadif.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) | |
| 11 | saldifcl2 46329 | . . . . 5 ⊢ ((dom 𝑀 ∈ SAlg ∧ 𝐴 ∈ dom 𝑀 ∧ 𝐵 ∈ dom 𝑀) → (𝐴 ∖ 𝐵) ∈ dom 𝑀) | |
| 12 | 9, 10, 8, 11 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ dom 𝑀) |
| 13 | disjdif 4425 | . . . . 5 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅ | |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅) |
| 15 | meadif.r | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) | |
| 16 | 6, 10, 15, 1, 8 | meassre 46478 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ) |
| 17 | difssd 4090 | . . . . 5 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) | |
| 18 | 6, 10, 15, 17, 12 | meassre 46478 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) ∈ ℝ) |
| 19 | 6, 7, 8, 12, 14, 16, 18 | meadjunre 46477 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((𝑀‘𝐵) + (𝑀‘(𝐴 ∖ 𝐵)))) |
| 20 | 5, 19 | eqtr2d 2765 | . 2 ⊢ (𝜑 → ((𝑀‘𝐵) + (𝑀‘(𝐴 ∖ 𝐵))) = (𝑀‘𝐴)) |
| 21 | 16 | recnd 11162 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℂ) |
| 22 | 18 | recnd 11162 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) ∈ ℂ) |
| 23 | 15 | recnd 11162 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℂ) |
| 24 | 21, 22, 23 | addrsub 11556 | . 2 ⊢ (𝜑 → (((𝑀‘𝐵) + (𝑀‘(𝐴 ∖ 𝐵))) = (𝑀‘𝐴) ↔ (𝑀‘(𝐴 ∖ 𝐵)) = ((𝑀‘𝐴) − (𝑀‘𝐵)))) |
| 25 | 20, 24 | mpbid 232 | 1 ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) = ((𝑀‘𝐴) − (𝑀‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ∪ cun 3903 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 dom cdm 5623 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 + caddc 11031 − cmin 11366 SAlgcsalg 46309 Meascmea 46450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-n0 12404 df-z 12491 df-uz 12755 df-rp 12913 df-xadd 13034 df-ico 13273 df-icc 13274 df-fz 13430 df-fzo 13577 df-seq 13928 df-exp 13988 df-hash 14257 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-clim 15414 df-sum 15613 df-salg 46310 df-sumge0 46364 df-mea 46451 |
| This theorem is referenced by: meaiininclem 46487 |
| Copyright terms: Public domain | W3C validator |