Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadif Structured version   Visualization version   GIF version

Theorem meadif 46400
Description: The measure of the difference of two sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
meadif.m (𝜑𝑀 ∈ Meas)
meadif.a (𝜑𝐴 ∈ dom 𝑀)
meadif.r (𝜑 → (𝑀𝐴) ∈ ℝ)
meadif.b (𝜑𝐵 ∈ dom 𝑀)
meadif.s (𝜑𝐵𝐴)
Assertion
Ref Expression
meadif (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) − (𝑀𝐵)))

Proof of Theorem meadif
StepHypRef Expression
1 meadif.s . . . . . 6 (𝜑𝐵𝐴)
2 undif 4505 . . . . . 6 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
31, 2sylib 218 . . . . 5 (𝜑 → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
43eqcomd 2746 . . . 4 (𝜑𝐴 = (𝐵 ∪ (𝐴𝐵)))
54fveq2d 6924 . . 3 (𝜑 → (𝑀𝐴) = (𝑀‘(𝐵 ∪ (𝐴𝐵))))
6 meadif.m . . . 4 (𝜑𝑀 ∈ Meas)
7 eqid 2740 . . . 4 dom 𝑀 = dom 𝑀
8 meadif.b . . . 4 (𝜑𝐵 ∈ dom 𝑀)
96, 7dmmeasal 46373 . . . . 5 (𝜑 → dom 𝑀 ∈ SAlg)
10 meadif.a . . . . 5 (𝜑𝐴 ∈ dom 𝑀)
11 saldifcl2 46249 . . . . 5 ((dom 𝑀 ∈ SAlg ∧ 𝐴 ∈ dom 𝑀𝐵 ∈ dom 𝑀) → (𝐴𝐵) ∈ dom 𝑀)
129, 10, 8, 11syl3anc 1371 . . . 4 (𝜑 → (𝐴𝐵) ∈ dom 𝑀)
13 disjdif 4495 . . . . 5 (𝐵 ∩ (𝐴𝐵)) = ∅
1413a1i 11 . . . 4 (𝜑 → (𝐵 ∩ (𝐴𝐵)) = ∅)
15 meadif.r . . . . 5 (𝜑 → (𝑀𝐴) ∈ ℝ)
166, 10, 15, 1, 8meassre 46398 . . . 4 (𝜑 → (𝑀𝐵) ∈ ℝ)
17 difssd 4160 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
186, 10, 15, 17, 12meassre 46398 . . . 4 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ ℝ)
196, 7, 8, 12, 14, 16, 18meadjunre 46397 . . 3 (𝜑 → (𝑀‘(𝐵 ∪ (𝐴𝐵))) = ((𝑀𝐵) + (𝑀‘(𝐴𝐵))))
205, 19eqtr2d 2781 . 2 (𝜑 → ((𝑀𝐵) + (𝑀‘(𝐴𝐵))) = (𝑀𝐴))
2116recnd 11318 . . 3 (𝜑 → (𝑀𝐵) ∈ ℂ)
2218recnd 11318 . . 3 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ ℂ)
2315recnd 11318 . . 3 (𝜑 → (𝑀𝐴) ∈ ℂ)
2421, 22, 23addrsub 11707 . 2 (𝜑 → (((𝑀𝐵) + (𝑀‘(𝐴𝐵))) = (𝑀𝐴) ↔ (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) − (𝑀𝐵))))
2520, 24mpbid 232 1 (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) − (𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  dom cdm 5700  cfv 6573  (class class class)co 7448  cr 11183   + caddc 11187  cmin 11520  SAlgcsalg 46229  Meascmea 46370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-xadd 13176  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-salg 46230  df-sumge0 46284  df-mea 46371
This theorem is referenced by:  meaiininclem  46407
  Copyright terms: Public domain W3C validator