Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadif Structured version   Visualization version   GIF version

Theorem meadif 46435
Description: The measure of the difference of two sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
meadif.m (𝜑𝑀 ∈ Meas)
meadif.a (𝜑𝐴 ∈ dom 𝑀)
meadif.r (𝜑 → (𝑀𝐴) ∈ ℝ)
meadif.b (𝜑𝐵 ∈ dom 𝑀)
meadif.s (𝜑𝐵𝐴)
Assertion
Ref Expression
meadif (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) − (𝑀𝐵)))

Proof of Theorem meadif
StepHypRef Expression
1 meadif.s . . . . . 6 (𝜑𝐵𝐴)
2 undif 4488 . . . . . 6 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
31, 2sylib 218 . . . . 5 (𝜑 → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
43eqcomd 2741 . . . 4 (𝜑𝐴 = (𝐵 ∪ (𝐴𝐵)))
54fveq2d 6911 . . 3 (𝜑 → (𝑀𝐴) = (𝑀‘(𝐵 ∪ (𝐴𝐵))))
6 meadif.m . . . 4 (𝜑𝑀 ∈ Meas)
7 eqid 2735 . . . 4 dom 𝑀 = dom 𝑀
8 meadif.b . . . 4 (𝜑𝐵 ∈ dom 𝑀)
96, 7dmmeasal 46408 . . . . 5 (𝜑 → dom 𝑀 ∈ SAlg)
10 meadif.a . . . . 5 (𝜑𝐴 ∈ dom 𝑀)
11 saldifcl2 46284 . . . . 5 ((dom 𝑀 ∈ SAlg ∧ 𝐴 ∈ dom 𝑀𝐵 ∈ dom 𝑀) → (𝐴𝐵) ∈ dom 𝑀)
129, 10, 8, 11syl3anc 1370 . . . 4 (𝜑 → (𝐴𝐵) ∈ dom 𝑀)
13 disjdif 4478 . . . . 5 (𝐵 ∩ (𝐴𝐵)) = ∅
1413a1i 11 . . . 4 (𝜑 → (𝐵 ∩ (𝐴𝐵)) = ∅)
15 meadif.r . . . . 5 (𝜑 → (𝑀𝐴) ∈ ℝ)
166, 10, 15, 1, 8meassre 46433 . . . 4 (𝜑 → (𝑀𝐵) ∈ ℝ)
17 difssd 4147 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
186, 10, 15, 17, 12meassre 46433 . . . 4 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ ℝ)
196, 7, 8, 12, 14, 16, 18meadjunre 46432 . . 3 (𝜑 → (𝑀‘(𝐵 ∪ (𝐴𝐵))) = ((𝑀𝐵) + (𝑀‘(𝐴𝐵))))
205, 19eqtr2d 2776 . 2 (𝜑 → ((𝑀𝐵) + (𝑀‘(𝐴𝐵))) = (𝑀𝐴))
2116recnd 11287 . . 3 (𝜑 → (𝑀𝐵) ∈ ℂ)
2218recnd 11287 . . 3 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ ℂ)
2315recnd 11287 . . 3 (𝜑 → (𝑀𝐴) ∈ ℂ)
2421, 22, 23addrsub 11678 . 2 (𝜑 → (((𝑀𝐵) + (𝑀‘(𝐴𝐵))) = (𝑀𝐴) ↔ (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) − (𝑀𝐵))))
2520, 24mpbid 232 1 (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) − (𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339  dom cdm 5689  cfv 6563  (class class class)co 7431  cr 11152   + caddc 11156  cmin 11490  SAlgcsalg 46264  Meascmea 46405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-xadd 13153  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-salg 46265  df-sumge0 46319  df-mea 46406
This theorem is referenced by:  meaiininclem  46442
  Copyright terms: Public domain W3C validator