Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meassle Structured version   Visualization version   GIF version

Theorem meassle 41604
Description: The measure of a set is greater than or equal to the measure of a subset, Property 112C (b) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meassle.m (𝜑𝑀 ∈ Meas)
meassle.x 𝑆 = dom 𝑀
meassle.a (𝜑𝐴𝑆)
meassle.b (𝜑𝐵𝑆)
meassle.ss (𝜑𝐴𝐵)
Assertion
Ref Expression
meassle (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))

Proof of Theorem meassle
StepHypRef Expression
1 meassle.m . . . 4 (𝜑𝑀 ∈ Meas)
2 meassle.x . . . 4 𝑆 = dom 𝑀
3 meassle.a . . . 4 (𝜑𝐴𝑆)
41, 2, 3meaxrcl 41602 . . 3 (𝜑 → (𝑀𝐴) ∈ ℝ*)
51, 2dmmeasal 41593 . . . . 5 (𝜑𝑆 ∈ SAlg)
6 meassle.b . . . . 5 (𝜑𝐵𝑆)
7 saldifcl2 41470 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐵𝑆𝐴𝑆) → (𝐵𝐴) ∈ 𝑆)
85, 6, 3, 7syl3anc 1439 . . . 4 (𝜑 → (𝐵𝐴) ∈ 𝑆)
91, 2, 8meacl 41599 . . 3 (𝜑 → (𝑀‘(𝐵𝐴)) ∈ (0[,]+∞))
104, 9xadd0ge 40444 . 2 (𝜑 → (𝑀𝐴) ≤ ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
11 meassle.ss . . . . . 6 (𝜑𝐴𝐵)
12 undif 4273 . . . . . . 7 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
1312biimpi 208 . . . . . 6 (𝐴𝐵 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
1411, 13syl 17 . . . . 5 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
1514fveq2d 6450 . . . 4 (𝜑 → (𝑀‘(𝐴 ∪ (𝐵𝐴))) = (𝑀𝐵))
1615eqcomd 2784 . . 3 (𝜑 → (𝑀𝐵) = (𝑀‘(𝐴 ∪ (𝐵𝐴))))
17 disjdif 4264 . . . . 5 (𝐴 ∩ (𝐵𝐴)) = ∅
1817a1i 11 . . . 4 (𝜑 → (𝐴 ∩ (𝐵𝐴)) = ∅)
191, 2, 3, 8, 18meadjun 41603 . . 3 (𝜑 → (𝑀‘(𝐴 ∪ (𝐵𝐴))) = ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
2016, 19eqtr2d 2815 . 2 (𝜑 → ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))) = (𝑀𝐵))
2110, 20breqtrd 4912 1 (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  cdif 3789  cun 3790  cin 3791  wss 3792  c0 4141   class class class wbr 4886  dom cdm 5355  cfv 6135  (class class class)co 6922  cle 10412   +𝑒 cxad 12255  SAlgcsalg 41452  Meascmea 41590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-disj 4855  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-xadd 12258  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-salg 41453  df-sumge0 41504  df-mea 41591
This theorem is referenced by:  meaunle  41605  meaiunlelem  41609  meassre  41618  meaiuninclem  41621  meaiuninc3v  41625  meaiininclem  41627  vonioolem2  41822
  Copyright terms: Public domain W3C validator