Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meassle Structured version   Visualization version   GIF version

Theorem meassle 45165
Description: The measure of a set is greater than or equal to the measure of a subset, Property 112C (b) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meassle.m (𝜑𝑀 ∈ Meas)
meassle.x 𝑆 = dom 𝑀
meassle.a (𝜑𝐴𝑆)
meassle.b (𝜑𝐵𝑆)
meassle.ss (𝜑𝐴𝐵)
Assertion
Ref Expression
meassle (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))

Proof of Theorem meassle
StepHypRef Expression
1 meassle.m . . . 4 (𝜑𝑀 ∈ Meas)
2 meassle.x . . . 4 𝑆 = dom 𝑀
3 meassle.a . . . 4 (𝜑𝐴𝑆)
41, 2, 3meaxrcl 45163 . . 3 (𝜑 → (𝑀𝐴) ∈ ℝ*)
51, 2dmmeasal 45154 . . . . 5 (𝜑𝑆 ∈ SAlg)
6 meassle.b . . . . 5 (𝜑𝐵𝑆)
7 saldifcl2 45030 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐵𝑆𝐴𝑆) → (𝐵𝐴) ∈ 𝑆)
85, 6, 3, 7syl3anc 1371 . . . 4 (𝜑 → (𝐵𝐴) ∈ 𝑆)
91, 2, 8meacl 45160 . . 3 (𝜑 → (𝑀‘(𝐵𝐴)) ∈ (0[,]+∞))
104, 9xadd0ge 44016 . 2 (𝜑 → (𝑀𝐴) ≤ ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
11 meassle.ss . . . . . 6 (𝜑𝐴𝐵)
12 undif 4480 . . . . . . 7 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
1312biimpi 215 . . . . . 6 (𝐴𝐵 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
1411, 13syl 17 . . . . 5 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
1514fveq2d 6892 . . . 4 (𝜑 → (𝑀‘(𝐴 ∪ (𝐵𝐴))) = (𝑀𝐵))
1615eqcomd 2738 . . 3 (𝜑 → (𝑀𝐵) = (𝑀‘(𝐴 ∪ (𝐵𝐴))))
17 disjdif 4470 . . . . 5 (𝐴 ∩ (𝐵𝐴)) = ∅
1817a1i 11 . . . 4 (𝜑 → (𝐴 ∩ (𝐵𝐴)) = ∅)
191, 2, 3, 8, 18meadjun 45164 . . 3 (𝜑 → (𝑀‘(𝐴 ∪ (𝐵𝐴))) = ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
2016, 19eqtr2d 2773 . 2 (𝜑 → ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))) = (𝑀𝐵))
2110, 20breqtrd 5173 1 (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4321   class class class wbr 5147  dom cdm 5675  cfv 6540  (class class class)co 7405  cle 11245   +𝑒 cxad 13086  SAlgcsalg 45010  Meascmea 45151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-xadd 13089  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-salg 45011  df-sumge0 45065  df-mea 45152
This theorem is referenced by:  meaunle  45166  meaiunlelem  45170  meassre  45179  meaiuninclem  45182  meaiuninc3v  45186  meaiininclem  45188  vonioolem2  45383
  Copyright terms: Public domain W3C validator