![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > meassle | Structured version Visualization version GIF version |
Description: The measure of a set is greater than or equal to the measure of a subset, Property 112C (b) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
meassle.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meassle.x | ⊢ 𝑆 = dom 𝑀 |
meassle.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
meassle.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
meassle.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
meassle | ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meassle.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
2 | meassle.x | . . . 4 ⊢ 𝑆 = dom 𝑀 | |
3 | meassle.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
4 | 1, 2, 3 | meaxrcl 41602 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) |
5 | 1, 2 | dmmeasal 41593 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
6 | meassle.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
7 | saldifcl2 41470 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝐵 ∖ 𝐴) ∈ 𝑆) | |
8 | 5, 6, 3, 7 | syl3anc 1439 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ 𝐴) ∈ 𝑆) |
9 | 1, 2, 8 | meacl 41599 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞)) |
10 | 4, 9 | xadd0ge 40444 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
11 | meassle.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
12 | undif 4273 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | |
13 | 12 | biimpi 208 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
14 | 11, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
15 | 14 | fveq2d 6450 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = (𝑀‘𝐵)) |
16 | 15 | eqcomd 2784 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) = (𝑀‘(𝐴 ∪ (𝐵 ∖ 𝐴)))) |
17 | disjdif 4264 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) |
19 | 1, 2, 3, 8, 18 | meadjun 41603 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
20 | 16, 19 | eqtr2d 2815 | . 2 ⊢ (𝜑 → ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴))) = (𝑀‘𝐵)) |
21 | 10, 20 | breqtrd 4912 | 1 ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ∖ cdif 3789 ∪ cun 3790 ∩ cin 3791 ⊆ wss 3792 ∅c0 4141 class class class wbr 4886 dom cdm 5355 ‘cfv 6135 (class class class)co 6922 ≤ cle 10412 +𝑒 cxad 12255 SAlgcsalg 41452 Meascmea 41590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-disj 4855 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-oi 8704 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-xadd 12258 df-ico 12493 df-icc 12494 df-fz 12644 df-fzo 12785 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-sum 14825 df-salg 41453 df-sumge0 41504 df-mea 41591 |
This theorem is referenced by: meaunle 41605 meaiunlelem 41609 meassre 41618 meaiuninclem 41621 meaiuninc3v 41625 meaiininclem 41627 vonioolem2 41822 |
Copyright terms: Public domain | W3C validator |