![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > meassle | Structured version Visualization version GIF version |
Description: The measure of a set is greater than or equal to the measure of a subset, Property 112C (b) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
meassle.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meassle.x | ⊢ 𝑆 = dom 𝑀 |
meassle.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
meassle.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
meassle.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
meassle | ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meassle.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
2 | meassle.x | . . . 4 ⊢ 𝑆 = dom 𝑀 | |
3 | meassle.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
4 | 1, 2, 3 | meaxrcl 45163 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) |
5 | 1, 2 | dmmeasal 45154 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
6 | meassle.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
7 | saldifcl2 45030 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝐵 ∖ 𝐴) ∈ 𝑆) | |
8 | 5, 6, 3, 7 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ 𝐴) ∈ 𝑆) |
9 | 1, 2, 8 | meacl 45160 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞)) |
10 | 4, 9 | xadd0ge 44016 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
11 | meassle.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
12 | undif 4480 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | |
13 | 12 | biimpi 215 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
14 | 11, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
15 | 14 | fveq2d 6892 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = (𝑀‘𝐵)) |
16 | 15 | eqcomd 2738 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) = (𝑀‘(𝐴 ∪ (𝐵 ∖ 𝐴)))) |
17 | disjdif 4470 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) |
19 | 1, 2, 3, 8, 18 | meadjun 45164 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
20 | 16, 19 | eqtr2d 2773 | . 2 ⊢ (𝜑 → ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴))) = (𝑀‘𝐵)) |
21 | 10, 20 | breqtrd 5173 | 1 ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 class class class wbr 5147 dom cdm 5675 ‘cfv 6540 (class class class)co 7405 ≤ cle 11245 +𝑒 cxad 13086 SAlgcsalg 45010 Meascmea 45151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-disj 5113 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-xadd 13089 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 df-salg 45011 df-sumge0 45065 df-mea 45152 |
This theorem is referenced by: meaunle 45166 meaiunlelem 45170 meassre 45179 meaiuninclem 45182 meaiuninc3v 45186 meaiininclem 45188 vonioolem2 45383 |
Copyright terms: Public domain | W3C validator |