Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > meassle | Structured version Visualization version GIF version |
Description: The measure of a set is greater than or equal to the measure of a subset, Property 112C (b) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
meassle.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meassle.x | ⊢ 𝑆 = dom 𝑀 |
meassle.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
meassle.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
meassle.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
meassle | ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meassle.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
2 | meassle.x | . . . 4 ⊢ 𝑆 = dom 𝑀 | |
3 | meassle.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
4 | 1, 2, 3 | meaxrcl 44244 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) |
5 | 1, 2 | dmmeasal 44235 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
6 | meassle.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
7 | saldifcl2 44111 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝐵 ∖ 𝐴) ∈ 𝑆) | |
8 | 5, 6, 3, 7 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ 𝐴) ∈ 𝑆) |
9 | 1, 2, 8 | meacl 44241 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞)) |
10 | 4, 9 | xadd0ge 43102 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
11 | meassle.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
12 | undif 4425 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | |
13 | 12 | biimpi 215 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
14 | 11, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
15 | 14 | fveq2d 6813 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = (𝑀‘𝐵)) |
16 | 15 | eqcomd 2743 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) = (𝑀‘(𝐴 ∪ (𝐵 ∖ 𝐴)))) |
17 | disjdif 4415 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) |
19 | 1, 2, 3, 8, 18 | meadjun 44245 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
20 | 16, 19 | eqtr2d 2778 | . 2 ⊢ (𝜑 → ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴))) = (𝑀‘𝐵)) |
21 | 10, 20 | breqtrd 5111 | 1 ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∖ cdif 3893 ∪ cun 3894 ∩ cin 3895 ⊆ wss 3896 ∅c0 4266 class class class wbr 5085 dom cdm 5605 ‘cfv 6463 (class class class)co 7313 ≤ cle 11080 +𝑒 cxad 12916 SAlgcsalg 44093 Meascmea 44232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-inf2 9467 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-pre-sup 11019 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-disj 5051 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-sup 9269 df-oi 9337 df-card 9765 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-3 12107 df-n0 12304 df-z 12390 df-uz 12653 df-rp 12801 df-xadd 12919 df-ico 13155 df-icc 13156 df-fz 13310 df-fzo 13453 df-seq 13792 df-exp 13853 df-hash 14115 df-cj 14879 df-re 14880 df-im 14881 df-sqrt 15015 df-abs 15016 df-clim 15266 df-sum 15467 df-salg 44094 df-sumge0 44146 df-mea 44233 |
This theorem is referenced by: meaunle 44247 meaiunlelem 44251 meassre 44260 meaiuninclem 44263 meaiuninc3v 44267 meaiininclem 44269 vonioolem2 44464 |
Copyright terms: Public domain | W3C validator |