| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meassle | Structured version Visualization version GIF version | ||
| Description: The measure of a set is greater than or equal to the measure of a subset, Property 112C (b) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| meassle.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
| meassle.x | ⊢ 𝑆 = dom 𝑀 |
| meassle.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| meassle.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| meassle.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| meassle | ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meassle.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 2 | meassle.x | . . . 4 ⊢ 𝑆 = dom 𝑀 | |
| 3 | meassle.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 4 | 1, 2, 3 | meaxrcl 46507 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) |
| 5 | 1, 2 | dmmeasal 46498 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 6 | meassle.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 7 | saldifcl2 46374 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝐵 ∖ 𝐴) ∈ 𝑆) | |
| 8 | 5, 6, 3, 7 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ 𝐴) ∈ 𝑆) |
| 9 | 1, 2, 8 | meacl 46504 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞)) |
| 10 | 4, 9 | xadd0ge 45368 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
| 11 | meassle.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 12 | undif 4429 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | |
| 13 | 12 | biimpi 216 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
| 14 | 11, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
| 15 | 14 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = (𝑀‘𝐵)) |
| 16 | 15 | eqcomd 2737 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) = (𝑀‘(𝐴 ∪ (𝐵 ∖ 𝐴)))) |
| 17 | disjdif 4419 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) |
| 19 | 1, 2, 3, 8, 18 | meadjun 46508 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
| 20 | 16, 19 | eqtr2d 2767 | . 2 ⊢ (𝜑 → ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴))) = (𝑀‘𝐵)) |
| 21 | 10, 20 | breqtrd 5115 | 1 ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 class class class wbr 5089 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 ≤ cle 11147 +𝑒 cxad 13009 SAlgcsalg 46354 Meascmea 46495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-xadd 13012 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-salg 46355 df-sumge0 46409 df-mea 46496 |
| This theorem is referenced by: meaunle 46510 meaiunlelem 46514 meassre 46523 meaiuninclem 46526 meaiuninc3v 46530 meaiininclem 46532 vonioolem2 46727 |
| Copyright terms: Public domain | W3C validator |