![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvrval | Structured version Visualization version GIF version |
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
dvrval.b | β’ π΅ = (Baseβπ ) |
dvrval.t | β’ Β· = (.rβπ ) |
dvrval.u | β’ π = (Unitβπ ) |
dvrval.i | β’ πΌ = (invrβπ ) |
dvrval.d | β’ / = (/rβπ ) |
Ref | Expression |
---|---|
dvrval | β’ ((π β π΅ β§ π β π) β (π / π) = (π Β· (πΌβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7409 | . 2 β’ (π₯ = π β (π₯ Β· (πΌβπ¦)) = (π Β· (πΌβπ¦))) | |
2 | fveq2 6882 | . . 3 β’ (π¦ = π β (πΌβπ¦) = (πΌβπ)) | |
3 | 2 | oveq2d 7418 | . 2 β’ (π¦ = π β (π Β· (πΌβπ¦)) = (π Β· (πΌβπ))) |
4 | dvrval.b | . . 3 β’ π΅ = (Baseβπ ) | |
5 | dvrval.t | . . 3 β’ Β· = (.rβπ ) | |
6 | dvrval.u | . . 3 β’ π = (Unitβπ ) | |
7 | dvrval.i | . . 3 β’ πΌ = (invrβπ ) | |
8 | dvrval.d | . . 3 β’ / = (/rβπ ) | |
9 | 4, 5, 6, 7, 8 | dvrfval 20300 | . 2 β’ / = (π₯ β π΅, π¦ β π β¦ (π₯ Β· (πΌβπ¦))) |
10 | ovex 7435 | . 2 β’ (π Β· (πΌβπ)) β V | |
11 | 1, 3, 9, 10 | ovmpo 7561 | 1 β’ ((π β π΅ β§ π β π) β (π / π) = (π Β· (πΌβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βcfv 6534 (class class class)co 7402 Basecbs 17149 .rcmulr 17203 Unitcui 20253 invrcinvr 20285 /rcdvr 20298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-dvr 20299 |
This theorem is referenced by: dvrcl 20302 unitdvcl 20303 dvrid 20304 dvr1 20305 dvrass 20306 dvrcan1 20307 dvrdir 20310 rdivmuldivd 20311 ringinvdv 20312 subrgdv 20487 abvdiv 20676 cnflddiv 21280 nmdvr 24531 sum2dchr 27148 dvrcan5 32877 |
Copyright terms: Public domain | W3C validator |