![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvrval | Structured version Visualization version GIF version |
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
dvrval.b | ⊢ 𝐵 = (Base‘𝑅) |
dvrval.t | ⊢ · = (.r‘𝑅) |
dvrval.u | ⊢ 𝑈 = (Unit‘𝑅) |
dvrval.i | ⊢ 𝐼 = (invr‘𝑅) |
dvrval.d | ⊢ / = (/r‘𝑅) |
Ref | Expression |
---|---|
dvrval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7410 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 · (𝐼‘𝑦)) = (𝑋 · (𝐼‘𝑦))) | |
2 | fveq2 6887 | . . 3 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
3 | 2 | oveq2d 7419 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 · (𝐼‘𝑦)) = (𝑋 · (𝐼‘𝑌))) |
4 | dvrval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
5 | dvrval.t | . . 3 ⊢ · = (.r‘𝑅) | |
6 | dvrval.u | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
7 | dvrval.i | . . 3 ⊢ 𝐼 = (invr‘𝑅) | |
8 | dvrval.d | . . 3 ⊢ / = (/r‘𝑅) | |
9 | 4, 5, 6, 7, 8 | dvrfval 20204 | . 2 ⊢ / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) |
10 | ovex 7436 | . 2 ⊢ (𝑋 · (𝐼‘𝑌)) ∈ V | |
11 | 1, 3, 9, 10 | ovmpo 7562 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6539 (class class class)co 7403 Basecbs 17139 .rcmulr 17193 Unitcui 20157 invrcinvr 20189 /rcdvr 20202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7969 df-2nd 7970 df-dvr 20203 |
This theorem is referenced by: dvrcl 20206 unitdvcl 20207 dvrid 20208 dvr1 20209 dvrass 20210 dvrcan1 20211 dvrdir 20214 rdivmuldivd 20215 ringinvdv 20216 subrgdv 20367 abvdiv 20432 cnflddiv 20959 nmdvr 24168 sum2dchr 26756 dvrcan5 32359 |
Copyright terms: Public domain | W3C validator |