MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrval Structured version   Visualization version   GIF version

Theorem dvrval 19001
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
dvrval.b 𝐵 = (Base‘𝑅)
dvrval.t · = (.r𝑅)
dvrval.u 𝑈 = (Unit‘𝑅)
dvrval.i 𝐼 = (invr𝑅)
dvrval.d / = (/r𝑅)
Assertion
Ref Expression
dvrval ((𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · (𝐼𝑌)))

Proof of Theorem dvrval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6885 . 2 (𝑥 = 𝑋 → (𝑥 · (𝐼𝑦)) = (𝑋 · (𝐼𝑦)))
2 fveq2 6411 . . 3 (𝑦 = 𝑌 → (𝐼𝑦) = (𝐼𝑌))
32oveq2d 6894 . 2 (𝑦 = 𝑌 → (𝑋 · (𝐼𝑦)) = (𝑋 · (𝐼𝑌)))
4 dvrval.b . . 3 𝐵 = (Base‘𝑅)
5 dvrval.t . . 3 · = (.r𝑅)
6 dvrval.u . . 3 𝑈 = (Unit‘𝑅)
7 dvrval.i . . 3 𝐼 = (invr𝑅)
8 dvrval.d . . 3 / = (/r𝑅)
94, 5, 6, 7, 8dvrfval 19000 . 2 / = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦)))
10 ovex 6910 . 2 (𝑋 · (𝐼𝑌)) ∈ V
111, 3, 9, 10ovmpt2 7030 1 ((𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · (𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  cfv 6101  (class class class)co 6878  Basecbs 16184  .rcmulr 16268  Unitcui 18955  invrcinvr 18987  /rcdvr 18998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-1st 7401  df-2nd 7402  df-dvr 18999
This theorem is referenced by:  dvrcl  19002  unitdvcl  19003  dvrid  19004  dvr1  19005  dvrass  19006  dvrcan1  19007  ringinvdv  19010  subrgdv  19115  abvdiv  19155  cnflddiv  20098  nmdvr  22802  sum2dchr  25351  dvrdir  30306  rdivmuldivd  30307  dvrcan5  30309
  Copyright terms: Public domain W3C validator