Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrval Structured version   Visualization version   GIF version

Theorem dvrval 19414
 Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
dvrval.b 𝐵 = (Base‘𝑅)
dvrval.t · = (.r𝑅)
dvrval.u 𝑈 = (Unit‘𝑅)
dvrval.i 𝐼 = (invr𝑅)
dvrval.d / = (/r𝑅)
Assertion
Ref Expression
dvrval ((𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · (𝐼𝑌)))

Proof of Theorem dvrval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7140 . 2 (𝑥 = 𝑋 → (𝑥 · (𝐼𝑦)) = (𝑋 · (𝐼𝑦)))
2 fveq2 6646 . . 3 (𝑦 = 𝑌 → (𝐼𝑦) = (𝐼𝑌))
32oveq2d 7149 . 2 (𝑦 = 𝑌 → (𝑋 · (𝐼𝑦)) = (𝑋 · (𝐼𝑌)))
4 dvrval.b . . 3 𝐵 = (Base‘𝑅)
5 dvrval.t . . 3 · = (.r𝑅)
6 dvrval.u . . 3 𝑈 = (Unit‘𝑅)
7 dvrval.i . . 3 𝐼 = (invr𝑅)
8 dvrval.d . . 3 / = (/r𝑅)
94, 5, 6, 7, 8dvrfval 19413 . 2 / = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦)))
10 ovex 7166 . 2 (𝑋 · (𝐼𝑌)) ∈ V
111, 3, 9, 10ovmpo 7287 1 ((𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · (𝐼𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1537   ∈ wcel 2114  ‘cfv 6331  (class class class)co 7133  Basecbs 16462  .rcmulr 16545  Unitcui 19368  invrcinvr 19400  /rcdvr 19411 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-ov 7136  df-oprab 7137  df-mpo 7138  df-1st 7667  df-2nd 7668  df-dvr 19412 This theorem is referenced by:  dvrcl  19415  unitdvcl  19416  dvrid  19417  dvr1  19418  dvrass  19419  dvrcan1  19420  ringinvdv  19423  subrgdv  19528  abvdiv  19584  cnflddiv  20551  nmdvr  23255  sum2dchr  25837  dvrdir  30869  rdivmuldivd  30870  dvrcan5  30872
 Copyright terms: Public domain W3C validator