Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvrval | Structured version Visualization version GIF version |
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
dvrval.b | ⊢ 𝐵 = (Base‘𝑅) |
dvrval.t | ⊢ · = (.r‘𝑅) |
dvrval.u | ⊢ 𝑈 = (Unit‘𝑅) |
dvrval.i | ⊢ 𝐼 = (invr‘𝑅) |
dvrval.d | ⊢ / = (/r‘𝑅) |
Ref | Expression |
---|---|
dvrval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7262 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 · (𝐼‘𝑦)) = (𝑋 · (𝐼‘𝑦))) | |
2 | fveq2 6756 | . . 3 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
3 | 2 | oveq2d 7271 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 · (𝐼‘𝑦)) = (𝑋 · (𝐼‘𝑌))) |
4 | dvrval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
5 | dvrval.t | . . 3 ⊢ · = (.r‘𝑅) | |
6 | dvrval.u | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
7 | dvrval.i | . . 3 ⊢ 𝐼 = (invr‘𝑅) | |
8 | dvrval.d | . . 3 ⊢ / = (/r‘𝑅) | |
9 | 4, 5, 6, 7, 8 | dvrfval 19841 | . 2 ⊢ / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) |
10 | ovex 7288 | . 2 ⊢ (𝑋 · (𝐼‘𝑌)) ∈ V | |
11 | 1, 3, 9, 10 | ovmpo 7411 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 .rcmulr 16889 Unitcui 19796 invrcinvr 19828 /rcdvr 19839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-dvr 19840 |
This theorem is referenced by: dvrcl 19843 unitdvcl 19844 dvrid 19845 dvr1 19846 dvrass 19847 dvrcan1 19848 ringinvdv 19851 subrgdv 19956 abvdiv 20012 cnflddiv 20540 nmdvr 23740 sum2dchr 26327 dvrdir 31389 rdivmuldivd 31390 dvrcan5 31392 |
Copyright terms: Public domain | W3C validator |