| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvrval | Structured version Visualization version GIF version | ||
| Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvrval.b | ⊢ 𝐵 = (Base‘𝑅) |
| dvrval.t | ⊢ · = (.r‘𝑅) |
| dvrval.u | ⊢ 𝑈 = (Unit‘𝑅) |
| dvrval.i | ⊢ 𝐼 = (invr‘𝑅) |
| dvrval.d | ⊢ / = (/r‘𝑅) |
| Ref | Expression |
|---|---|
| dvrval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7412 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 · (𝐼‘𝑦)) = (𝑋 · (𝐼‘𝑦))) | |
| 2 | fveq2 6876 | . . 3 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
| 3 | 2 | oveq2d 7421 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 · (𝐼‘𝑦)) = (𝑋 · (𝐼‘𝑌))) |
| 4 | dvrval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | dvrval.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 6 | dvrval.u | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 7 | dvrval.i | . . 3 ⊢ 𝐼 = (invr‘𝑅) | |
| 8 | dvrval.d | . . 3 ⊢ / = (/r‘𝑅) | |
| 9 | 4, 5, 6, 7, 8 | dvrfval 20362 | . 2 ⊢ / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) |
| 10 | ovex 7438 | . 2 ⊢ (𝑋 · (𝐼‘𝑌)) ∈ V | |
| 11 | 1, 3, 9, 10 | ovmpo 7567 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 .rcmulr 17272 Unitcui 20315 invrcinvr 20347 /rcdvr 20360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-dvr 20361 |
| This theorem is referenced by: dvrcl 20364 unitdvcl 20365 dvrid 20366 dvr1 20367 dvrass 20368 dvrcan1 20369 dvrdir 20372 rdivmuldivd 20373 ringinvdv 20374 subrgdv 20549 abvdiv 20789 cnflddiv 21363 cnflddivOLD 21364 nmdvr 24609 sum2dchr 27237 dvrcan5 33231 |
| Copyright terms: Public domain | W3C validator |