Proof of Theorem mertenslem1
Step | Hyp | Ref
| Expression |
1 | | mertens.12 |
. . . . . . 7
⊢ (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧
∀𝑚 ∈
(ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))) |
2 | 1 | simpld 494 |
. . . . . 6
⊢ (𝜑 → 𝜓) |
3 | | mertens.11 |
. . . . . 6
⊢ (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
4 | 2, 3 | sylib 217 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ ℕ ∧ ∀𝑛 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
5 | 4 | simpld 494 |
. . . 4
⊢ (𝜑 → 𝑠 ∈ ℕ) |
6 | 5 | nnnn0d 12223 |
. . 3
⊢ (𝜑 → 𝑠 ∈ ℕ0) |
7 | 1 | simprd 495 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ ℕ0 ∧
∀𝑚 ∈
(ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) |
8 | 7 | simpld 494 |
. . 3
⊢ (𝜑 → 𝑡 ∈ ℕ0) |
9 | 6, 8 | nn0addcld 12227 |
. 2
⊢ (𝜑 → (𝑠 + 𝑡) ∈
ℕ0) |
10 | | fzfid 13621 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (0...𝑚) ∈ Fin) |
11 | | simpl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝜑) |
12 | | elfznn0 13278 |
. . . . . . . 8
⊢ (𝑗 ∈ (0...𝑚) → 𝑗 ∈ ℕ0) |
13 | | mertens.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈
ℂ) |
14 | 11, 12, 13 | syl2an 595 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 𝐴 ∈ ℂ) |
15 | | eqid 2738 |
. . . . . . . 8
⊢
(ℤ≥‘((𝑚 − 𝑗) + 1)) =
(ℤ≥‘((𝑚 − 𝑗) + 1)) |
16 | | fznn0sub 13217 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...𝑚) → (𝑚 − 𝑗) ∈
ℕ0) |
17 | 16 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚 − 𝑗) ∈
ℕ0) |
18 | | peano2nn0 12203 |
. . . . . . . . . 10
⊢ ((𝑚 − 𝑗) ∈ ℕ0 → ((𝑚 − 𝑗) + 1) ∈
ℕ0) |
19 | 17, 18 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚 − 𝑗) + 1) ∈
ℕ0) |
20 | 19 | nn0zd 12353 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚 − 𝑗) + 1) ∈ ℤ) |
21 | | simplll 771 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝜑) |
22 | | eluznn0 12586 |
. . . . . . . . . 10
⊢ ((((𝑚 − 𝑗) + 1) ∈ ℕ0 ∧ 𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝑘 ∈ ℕ0) |
23 | 19, 22 | sylan 579 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝑘 ∈ ℕ0) |
24 | | mertens.4 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) |
25 | 21, 23, 24 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → (𝐺‘𝑘) = 𝐵) |
26 | | mertens.5 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
27 | 21, 23, 26 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝐵 ∈ ℂ) |
28 | | mertens.8 |
. . . . . . . . . 10
⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝
) |
29 | 28 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → seq0( + , 𝐺) ∈ dom ⇝ ) |
30 | | nn0uz 12549 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
31 | | simpll 763 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 𝜑) |
32 | 24, 26 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
33 | 31, 32 | sylan 579 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
34 | 30, 19, 33 | iserex 15296 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq((𝑚 − 𝑗) + 1)( + , 𝐺) ∈ dom ⇝ )) |
35 | 29, 34 | mpbid 231 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → seq((𝑚 − 𝑗) + 1)( + , 𝐺) ∈ dom ⇝ ) |
36 | 15, 20, 25, 27, 35 | isumcl 15401 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵 ∈ ℂ) |
37 | 14, 36 | mulcld 10926 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℂ) |
38 | 10, 37 | fsumcl 15373 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℂ) |
39 | 38 | abscld 15076 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℝ) |
40 | 37 | abscld 15076 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℝ) |
41 | 10, 40 | fsumrecl 15374 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℝ) |
42 | | mertens.9 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
43 | 42 | rpred 12701 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ ℝ) |
44 | 43 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝐸 ∈ ℝ) |
45 | 10, 37 | fsumabs 15441 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵))) |
46 | | fzfid 13621 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (0...(𝑚 − 𝑠)) ∈ Fin) |
47 | 6 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑠 ∈ ℕ0) |
48 | 47 | nn0ge0d 12226 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 0 ≤ 𝑠) |
49 | | eluzelz 12521 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈
(ℤ≥‘(𝑠 + 𝑡)) → 𝑚 ∈ ℤ) |
50 | 49 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑚 ∈ ℤ) |
51 | 50 | zred 12355 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑚 ∈ ℝ) |
52 | 47 | nn0red 12224 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑠 ∈ ℝ) |
53 | 51, 52 | subge02d 11497 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (0 ≤ 𝑠 ↔ (𝑚 − 𝑠) ≤ 𝑚)) |
54 | 48, 53 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − 𝑠) ≤ 𝑚) |
55 | 47, 30 | eleqtrdi 2849 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑠 ∈
(ℤ≥‘0)) |
56 | 5 | nnzd 12354 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑠 ∈ ℤ) |
57 | | uzid 12526 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ ℤ → 𝑠 ∈
(ℤ≥‘𝑠)) |
58 | 56, 57 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑠 ∈ (ℤ≥‘𝑠)) |
59 | | uzaddcl 12573 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 ∈
(ℤ≥‘𝑠) ∧ 𝑡 ∈ ℕ0) → (𝑠 + 𝑡) ∈ (ℤ≥‘𝑠)) |
60 | 58, 8, 59 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑠 + 𝑡) ∈ (ℤ≥‘𝑠)) |
61 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(ℤ≥‘𝑠) = (ℤ≥‘𝑠) |
62 | 61 | uztrn2 12530 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑠 + 𝑡) ∈ (ℤ≥‘𝑠) ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ≥‘𝑠)) |
63 | 60, 62 | sylan 579 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ≥‘𝑠)) |
64 | | elfzuzb 13179 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ (0...𝑚) ↔ (𝑠 ∈ (ℤ≥‘0)
∧ 𝑚 ∈
(ℤ≥‘𝑠))) |
65 | 55, 63, 64 | sylanbrc 582 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑠 ∈ (0...𝑚)) |
66 | | fznn0sub2 13292 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ (0...𝑚) → (𝑚 − 𝑠) ∈ (0...𝑚)) |
67 | 65, 66 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − 𝑠) ∈ (0...𝑚)) |
68 | | elfzelz 13185 |
. . . . . . . . . . . . 13
⊢ ((𝑚 − 𝑠) ∈ (0...𝑚) → (𝑚 − 𝑠) ∈ ℤ) |
69 | 67, 68 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − 𝑠) ∈ ℤ) |
70 | | eluz 12525 |
. . . . . . . . . . . 12
⊢ (((𝑚 − 𝑠) ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ≥‘(𝑚 − 𝑠)) ↔ (𝑚 − 𝑠) ≤ 𝑚)) |
71 | 69, 50, 70 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 ∈ (ℤ≥‘(𝑚 − 𝑠)) ↔ (𝑚 − 𝑠) ≤ 𝑚)) |
72 | 54, 71 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ≥‘(𝑚 − 𝑠))) |
73 | | fzss2 13225 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(ℤ≥‘(𝑚 − 𝑠)) → (0...(𝑚 − 𝑠)) ⊆ (0...𝑚)) |
74 | 72, 73 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (0...(𝑚 − 𝑠)) ⊆ (0...𝑚)) |
75 | 74 | sselda 3917 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑗 ∈ (0...𝑚)) |
76 | 13 | abscld 15076 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(abs‘𝐴) ∈
ℝ) |
77 | 11, 12, 76 | syl2an 595 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘𝐴) ∈ ℝ) |
78 | 36 | abscld 15076 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℝ) |
79 | 77, 78 | remulcld 10936 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℝ) |
80 | 75, 79 | syldan 590 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℝ) |
81 | 46, 80 | fsumrecl 15374 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℝ) |
82 | | fzfid 13621 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (((𝑚 − 𝑠) + 1)...𝑚) ∈ Fin) |
83 | | elfznn0 13278 |
. . . . . . . . . . . . 13
⊢ ((𝑚 − 𝑠) ∈ (0...𝑚) → (𝑚 − 𝑠) ∈
ℕ0) |
84 | 67, 83 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − 𝑠) ∈
ℕ0) |
85 | | peano2nn0 12203 |
. . . . . . . . . . . 12
⊢ ((𝑚 − 𝑠) ∈ ℕ0 → ((𝑚 − 𝑠) + 1) ∈
ℕ0) |
86 | 84, 85 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((𝑚 − 𝑠) + 1) ∈
ℕ0) |
87 | 86, 30 | eleqtrdi 2849 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((𝑚 − 𝑠) + 1) ∈
(ℤ≥‘0)) |
88 | | fzss1 13224 |
. . . . . . . . . 10
⊢ (((𝑚 − 𝑠) + 1) ∈
(ℤ≥‘0) → (((𝑚 − 𝑠) + 1)...𝑚) ⊆ (0...𝑚)) |
89 | 87, 88 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (((𝑚 − 𝑠) + 1)...𝑚) ⊆ (0...𝑚)) |
90 | 89 | sselda 3917 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → 𝑗 ∈ (0...𝑚)) |
91 | 90, 79 | syldan 590 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℝ) |
92 | 82, 91 | fsumrecl 15374 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℝ) |
93 | 42 | rphalfcld 12713 |
. . . . . . . 8
⊢ (𝜑 → (𝐸 / 2) ∈
ℝ+) |
94 | 93 | rpred 12701 |
. . . . . . 7
⊢ (𝜑 → (𝐸 / 2) ∈ ℝ) |
95 | 94 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝐸 / 2) ∈ ℝ) |
96 | | elfznn0 13278 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...(𝑚 − 𝑠)) → 𝑗 ∈ ℕ0) |
97 | 11, 96, 76 | syl2an 595 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (abs‘𝐴) ∈ ℝ) |
98 | 46, 97 | fsumrecl 15374 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) ∈ ℝ) |
99 | 98, 95 | remulcld 10936 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) ∈ ℝ) |
100 | | 0zd 12261 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈
ℤ) |
101 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (𝐾‘𝑗)) |
102 | | mertens.2 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) |
103 | 102, 76 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) ∈ ℝ) |
104 | | mertens.7 |
. . . . . . . . . . 11
⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝
) |
105 | 30, 100, 101, 103, 104 | isumrecl 15405 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) ∈ ℝ) |
106 | 13 | absge0d 15084 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 0 ≤
(abs‘𝐴)) |
107 | 106, 102 | breqtrrd 5098 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 0 ≤
(𝐾‘𝑗)) |
108 | 30, 100, 101, 103, 104, 107 | isumge0 15406 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ Σ𝑗 ∈ ℕ0
(𝐾‘𝑗)) |
109 | 105, 108 | ge0p1rpd 12731 |
. . . . . . . . 9
⊢ (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ∈
ℝ+) |
110 | 109 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ∈
ℝ+) |
111 | 99, 110 | rerpdivcld 12732 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ∈ ℝ) |
112 | 93, 109 | rpdivcld 12718 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ∈
ℝ+) |
113 | 112 | rpred 12701 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ∈ ℝ) |
114 | 113 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ∈ ℝ) |
115 | 97, 114 | remulcld 10936 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) ∈ ℝ) |
116 | 75, 20 | syldan 590 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ((𝑚 − 𝑗) + 1) ∈ ℤ) |
117 | | simplll 771 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝜑) |
118 | 75, 19 | syldan 590 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ((𝑚 − 𝑗) + 1) ∈
ℕ0) |
119 | 118, 22 | sylan 579 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝑘 ∈ ℕ0) |
120 | 117, 119,
24 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → (𝐺‘𝑘) = 𝐵) |
121 | 117, 119,
26 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝐵 ∈ ℂ) |
122 | 75, 35 | syldan 590 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → seq((𝑚 − 𝑗) + 1)( + , 𝐺) ∈ dom ⇝ ) |
123 | 15, 116, 120, 121, 122 | isumcl 15401 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵 ∈ ℂ) |
124 | 123 | abscld 15076 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℝ) |
125 | 76, 106 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((abs‘𝐴) ∈
ℝ ∧ 0 ≤ (abs‘𝐴))) |
126 | 11, 96, 125 | syl2an 595 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤
(abs‘𝐴))) |
127 | 120 | sumeq2dv 15343 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) |
128 | 127 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘)) = (abs‘Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
129 | | fvoveq1 7278 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑚 − 𝑗) → (ℤ≥‘(𝑛 + 1)) =
(ℤ≥‘((𝑚 − 𝑗) + 1))) |
130 | 129 | sumeq1d 15341 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝑚 − 𝑗) → Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘)) |
131 | 130 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑚 − 𝑗) → (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) = (abs‘Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘))) |
132 | 131 | breq1d 5080 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑚 − 𝑗) → ((abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
133 | 4 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑛 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
134 | 133 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ∀𝑛 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
135 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...(𝑚 − 𝑠)) → 𝑗 ∈ ℤ) |
136 | 135 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑗 ∈ ℤ) |
137 | 136 | zred 12355 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑗 ∈ ℝ) |
138 | 49 | ad2antlr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑚 ∈ ℤ) |
139 | 138 | zred 12355 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑚 ∈ ℝ) |
140 | 56 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑠 ∈ ℤ) |
141 | 140 | zred 12355 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑠 ∈ ℝ) |
142 | | elfzle2 13189 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...(𝑚 − 𝑠)) → 𝑗 ≤ (𝑚 − 𝑠)) |
143 | 142 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑗 ≤ (𝑚 − 𝑠)) |
144 | 137, 139,
141, 143 | lesubd 11509 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑠 ≤ (𝑚 − 𝑗)) |
145 | 138, 136 | zsubcld 12360 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (𝑚 − 𝑗) ∈ ℤ) |
146 | | eluz 12525 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ ℤ ∧ (𝑚 − 𝑗) ∈ ℤ) → ((𝑚 − 𝑗) ∈ (ℤ≥‘𝑠) ↔ 𝑠 ≤ (𝑚 − 𝑗))) |
147 | 140, 145,
146 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ((𝑚 − 𝑗) ∈ (ℤ≥‘𝑠) ↔ 𝑠 ≤ (𝑚 − 𝑗))) |
148 | 144, 147 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (𝑚 − 𝑗) ∈ (ℤ≥‘𝑠)) |
149 | 132, 134,
148 | rspcdva 3554 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
150 | 128, 149 | eqbrtrrd 5094 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
151 | 124, 114,
150 | ltled 11053 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ≤ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
152 | | lemul2a 11760 |
. . . . . . . . . 10
⊢
((((abs‘Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℝ ∧ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ∈ ℝ ∧
((abs‘𝐴) ∈
ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ≤ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
153 | 124, 114,
126, 151, 152 | syl31anc 1371 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
154 | 46, 80, 115, 153 | fsumle 15439 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
155 | 98 | recnd 10934 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) ∈ ℂ) |
156 | 93 | rpcnd 12703 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸 / 2) ∈ ℂ) |
157 | 156 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝐸 / 2) ∈ ℂ) |
158 | | peano2re 11078 |
. . . . . . . . . . . . 13
⊢
(Σ𝑗 ∈
ℕ0 (𝐾‘𝑗) ∈ ℝ → (Σ𝑗 ∈ ℕ0
(𝐾‘𝑗) + 1) ∈ ℝ) |
159 | 105, 158 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ∈ ℝ) |
160 | 159 | recnd 10934 |
. . . . . . . . . . 11
⊢ (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ∈ ℂ) |
161 | 160 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ∈ ℂ) |
162 | 109 | rpne0d 12706 |
. . . . . . . . . . 11
⊢ (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ≠ 0) |
163 | 162 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ≠ 0) |
164 | 155, 157,
161, 163 | divassd 11716 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) = (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
165 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑗 → (𝐾‘𝑛) = (𝐾‘𝑗)) |
166 | 165 | cbvsumv 15336 |
. . . . . . . . . . . . . . . 16
⊢
Σ𝑛 ∈
ℕ0 (𝐾‘𝑛) = Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) |
167 | 166 | oveq1i 7265 |
. . . . . . . . . . . . . . 15
⊢
(Σ𝑛 ∈
ℕ0 (𝐾‘𝑛) + 1) = (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) |
168 | 167 | oveq2i 7266 |
. . . . . . . . . . . . . 14
⊢ ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0
(𝐾‘𝑛) + 1)) = ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) |
169 | 168, 112 | eqeltrid 2843 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾‘𝑛) + 1)) ∈
ℝ+) |
170 | 169 | rpcnd 12703 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾‘𝑛) + 1)) ∈ ℂ) |
171 | 170 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾‘𝑛) + 1)) ∈ ℂ) |
172 | 76 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(abs‘𝐴) ∈
ℂ) |
173 | 11, 96, 172 | syl2an 595 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (abs‘𝐴) ∈ ℂ) |
174 | 46, 171, 173 | fsummulc1 15425 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾‘𝑛) + 1))) = Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾‘𝑛) + 1)))) |
175 | 168 | oveq2i 7266 |
. . . . . . . . . 10
⊢
(Σ𝑗 ∈
(0...(𝑚 − 𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾‘𝑛) + 1))) = (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
176 | 168 | oveq2i 7266 |
. . . . . . . . . . . 12
⊢
((abs‘𝐴)
· ((𝐸 / 2) /
(Σ𝑛 ∈
ℕ0 (𝐾‘𝑛) + 1))) = ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
177 | 176 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...(𝑚 − 𝑠)) → ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾‘𝑛) + 1))) = ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
178 | 177 | sumeq2i 15339 |
. . . . . . . . . 10
⊢
Σ𝑗 ∈
(0...(𝑚 − 𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾‘𝑛) + 1))) = Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
179 | 174, 175,
178 | 3eqtr3g 2802 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) = Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
180 | 164, 179 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) = Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
181 | 154, 180 | breqtrrd 5098 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ ((Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
182 | 105 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) ∈ ℝ) |
183 | 159 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ∈ ℝ) |
184 | | 0zd 12261 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 0 ∈ ℤ) |
185 | | fz0ssnn0 13280 |
. . . . . . . . . . . . 13
⊢
(0...(𝑚 −
𝑠)) ⊆
ℕ0 |
186 | 185 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (0...(𝑚 − 𝑠)) ⊆
ℕ0) |
187 | 102 | adantlr 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) |
188 | 76 | adantlr 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) →
(abs‘𝐴) ∈
ℝ) |
189 | 106 | adantlr 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → 0 ≤
(abs‘𝐴)) |
190 | 104 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → seq0( + , 𝐾) ∈ dom ⇝ ) |
191 | 30, 184, 46, 186, 187, 188, 189, 190 | isumless 15485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) ≤ Σ𝑗 ∈ ℕ0 (abs‘𝐴)) |
192 | 102 | sumeq2dv 15343 |
. . . . . . . . . . . 12
⊢ (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) = Σ𝑗 ∈ ℕ0 (abs‘𝐴)) |
193 | 192 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) = Σ𝑗 ∈ ℕ0 (abs‘𝐴)) |
194 | 191, 193 | breqtrrd 5098 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) ≤ Σ𝑗 ∈ ℕ0 (𝐾‘𝑗)) |
195 | 105 | ltp1d 11835 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) < (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) |
196 | 195 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) < (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) |
197 | 98, 182, 183, 194, 196 | lelttrd 11063 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) |
198 | 93 | rpregt0d 12707 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2))) |
199 | 198 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2))) |
200 | | ltmul1 11755 |
. . . . . . . . . 10
⊢
((Σ𝑗 ∈
(0...(𝑚 − 𝑠))(abs‘𝐴) ∈ ℝ ∧ (Σ𝑗 ∈ ℕ0
(𝐾‘𝑗) + 1) ∈ ℝ ∧ ((𝐸 / 2) ∈ ℝ ∧ 0
< (𝐸 / 2))) →
(Σ𝑗 ∈
(0...(𝑚 − 𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ↔ (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) · (𝐸 / 2)))) |
201 | 98, 183, 199, 200 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ↔ (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) · (𝐸 / 2)))) |
202 | 197, 201 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) · (𝐸 / 2))) |
203 | 109 | rpregt0d 12707 |
. . . . . . . . . 10
⊢ (𝜑 → ((Σ𝑗 ∈ ℕ0
(𝐾‘𝑗) + 1) ∈ ℝ ∧ 0 <
(Σ𝑗 ∈
ℕ0 (𝐾‘𝑗) + 1))) |
204 | 203 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ∈ ℝ ∧ 0 <
(Σ𝑗 ∈
ℕ0 (𝐾‘𝑗) + 1))) |
205 | | ltdivmul 11780 |
. . . . . . . . 9
⊢
(((Σ𝑗 ∈
(0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) ∈ ℝ ∧ (𝐸 / 2) ∈ ℝ ∧
((Σ𝑗 ∈
ℕ0 (𝐾‘𝑗) + 1) ∈ ℝ ∧ 0 <
(Σ𝑗 ∈
ℕ0 (𝐾‘𝑗) + 1))) → (((Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) < (𝐸 / 2) ↔ (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) · (𝐸 / 2)))) |
206 | 99, 95, 204, 205 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (((Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) < (𝐸 / 2) ↔ (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) · (𝐸 / 2)))) |
207 | 202, 206 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) < (𝐸 / 2)) |
208 | 81, 111, 95, 181, 207 | lelttrd 11063 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < (𝐸 / 2)) |
209 | | mertens.13 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0 ≤ sup(𝑇, ℝ, < ) ∧ (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑇 𝑤 ≤ 𝑧))) |
210 | 209 | simprd 495 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑇 𝑤 ≤ 𝑧)) |
211 | | suprcl 11865 |
. . . . . . . . . . 11
⊢ ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑇 𝑤 ≤ 𝑧) → sup(𝑇, ℝ, < ) ∈
ℝ) |
212 | 210, 211 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → sup(𝑇, ℝ, < ) ∈
ℝ) |
213 | 94, 212 | remulcld 10936 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸 / 2) · sup(𝑇, ℝ, < )) ∈
ℝ) |
214 | 209 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ sup(𝑇, ℝ, <
)) |
215 | 212, 214 | ge0p1rpd 12731 |
. . . . . . . . 9
⊢ (𝜑 → (sup(𝑇, ℝ, < ) + 1) ∈
ℝ+) |
216 | 213, 215 | rerpdivcld 12732 |
. . . . . . . 8
⊢ (𝜑 → (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) ∈
ℝ) |
217 | 216 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) ∈
ℝ) |
218 | 5 | nnrpd 12699 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑠 ∈ ℝ+) |
219 | 93, 218 | rpdivcld 12718 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐸 / 2) / 𝑠) ∈
ℝ+) |
220 | 219, 215 | rpdivcld 12718 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈
ℝ+) |
221 | 220 | rpred 12701 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈
ℝ) |
222 | 221, 212 | remulcld 10936 |
. . . . . . . . . 10
⊢ (𝜑 → ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) ∈
ℝ) |
223 | 222 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) ∈
ℝ) |
224 | | simpll 763 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → 𝜑) |
225 | 90, 12 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → 𝑗 ∈ ℕ0) |
226 | 224, 225,
76 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (abs‘𝐴) ∈ ℝ) |
227 | 221 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈
ℝ) |
228 | 224, 225,
102 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝐾‘𝑗) = (abs‘𝐴)) |
229 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑗 → (𝐾‘𝑚) = (𝐾‘𝑗)) |
230 | 229 | breq1d 5080 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑗 → ((𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ (𝐾‘𝑗) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) |
231 | 7 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑚 ∈ (ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) |
232 | 231 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ∀𝑚 ∈ (ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) |
233 | | elfzuz 13181 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚) → 𝑗 ∈ (ℤ≥‘((𝑚 − 𝑠) + 1))) |
234 | | eluzle 12524 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈
(ℤ≥‘(𝑠 + 𝑡)) → (𝑠 + 𝑡) ≤ 𝑚) |
235 | 234 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑠 + 𝑡) ≤ 𝑚) |
236 | 8 | nn0zd 12353 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑡 ∈ ℤ) |
237 | 236 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑡 ∈ ℤ) |
238 | 237 | zred 12355 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑡 ∈ ℝ) |
239 | 52, 238, 51 | leaddsub2d 11507 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((𝑠 + 𝑡) ≤ 𝑚 ↔ 𝑡 ≤ (𝑚 − 𝑠))) |
240 | 235, 239 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑡 ≤ (𝑚 − 𝑠)) |
241 | | eluz 12525 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑡 ∈ ℤ ∧ (𝑚 − 𝑠) ∈ ℤ) → ((𝑚 − 𝑠) ∈ (ℤ≥‘𝑡) ↔ 𝑡 ≤ (𝑚 − 𝑠))) |
242 | 237, 69, 241 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((𝑚 − 𝑠) ∈ (ℤ≥‘𝑡) ↔ 𝑡 ≤ (𝑚 − 𝑠))) |
243 | 240, 242 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − 𝑠) ∈ (ℤ≥‘𝑡)) |
244 | | peano2uz 12570 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 − 𝑠) ∈ (ℤ≥‘𝑡) → ((𝑚 − 𝑠) + 1) ∈
(ℤ≥‘𝑡)) |
245 | 243, 244 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((𝑚 − 𝑠) + 1) ∈
(ℤ≥‘𝑡)) |
246 | | uztrn 12529 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈
(ℤ≥‘((𝑚 − 𝑠) + 1)) ∧ ((𝑚 − 𝑠) + 1) ∈
(ℤ≥‘𝑡)) → 𝑗 ∈ (ℤ≥‘𝑡)) |
247 | 233, 245,
246 | syl2anr 596 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → 𝑗 ∈ (ℤ≥‘𝑡)) |
248 | 230, 232,
247 | rspcdva 3554 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝐾‘𝑗) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) |
249 | 228, 248 | eqbrtrrd 5094 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (abs‘𝐴) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) |
250 | 226, 227,
249 | ltled 11053 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) |
251 | 210 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑇 𝑤 ≤ 𝑧)) |
252 | 51 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → 𝑚 ∈ ℝ) |
253 | | peano2zm 12293 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ ℤ → (𝑠 − 1) ∈
ℤ) |
254 | 56, 253 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑠 − 1) ∈ ℤ) |
255 | 254 | zred 12355 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑠 − 1) ∈ ℝ) |
256 | 255 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝑠 − 1) ∈ ℝ) |
257 | 225 | nn0red 12224 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → 𝑗 ∈ ℝ) |
258 | 50 | zcnd 12356 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑚 ∈ ℂ) |
259 | 52 | recnd 10934 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑠 ∈ ℂ) |
260 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 1 ∈ ℂ) |
261 | 258, 259,
260 | subsubd 11290 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − (𝑠 − 1)) = ((𝑚 − 𝑠) + 1)) |
262 | 261 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝑚 − (𝑠 − 1)) = ((𝑚 − 𝑠) + 1)) |
263 | | elfzle1 13188 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚) → ((𝑚 − 𝑠) + 1) ≤ 𝑗) |
264 | 263 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ((𝑚 − 𝑠) + 1) ≤ 𝑗) |
265 | 262, 264 | eqbrtrd 5092 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝑚 − (𝑠 − 1)) ≤ 𝑗) |
266 | 252, 256,
257, 265 | subled 11508 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝑚 − 𝑗) ≤ (𝑠 − 1)) |
267 | 90, 16 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝑚 − 𝑗) ∈
ℕ0) |
268 | 267, 30 | eleqtrdi 2849 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝑚 − 𝑗) ∈
(ℤ≥‘0)) |
269 | 254 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝑠 − 1) ∈ ℤ) |
270 | | elfz5 13177 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 − 𝑗) ∈ (ℤ≥‘0)
∧ (𝑠 − 1) ∈
ℤ) → ((𝑚 −
𝑗) ∈ (0...(𝑠 − 1)) ↔ (𝑚 − 𝑗) ≤ (𝑠 − 1))) |
271 | 268, 269,
270 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ((𝑚 − 𝑗) ∈ (0...(𝑠 − 1)) ↔ (𝑚 − 𝑗) ≤ (𝑠 − 1))) |
272 | 266, 271 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝑚 − 𝑗) ∈ (0...(𝑠 − 1))) |
273 | | simplll 771 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝜑) |
274 | 90, 19 | syldan 590 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ((𝑚 − 𝑗) + 1) ∈
ℕ0) |
275 | 274, 22 | sylan 579 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝑘 ∈ ℕ0) |
276 | 273, 275,
24 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → (𝐺‘𝑘) = 𝐵) |
277 | 276 | sumeq2dv 15343 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) |
278 | 277 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵 = Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘)) |
279 | 278 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘))) |
280 | 131 | rspceeqv 3567 |
. . . . . . . . . . . . 13
⊢ (((𝑚 − 𝑗) ∈ (0...(𝑠 − 1)) ∧ (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘))) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
281 | 272, 279,
280 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
282 | | fvex 6769 |
. . . . . . . . . . . . 13
⊢
(abs‘Σ𝑘
∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ V |
283 | | eqeq1 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
284 | 283 | rexbidv 3225 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) → (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
285 | | mertens.10 |
. . . . . . . . . . . . 13
⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} |
286 | 282, 284,
285 | elab2 3606 |
. . . . . . . . . . . 12
⊢
((abs‘Σ𝑘
∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
287 | 281, 286 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ 𝑇) |
288 | | suprub 11866 |
. . . . . . . . . . 11
⊢ (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑇 𝑤 ≤ 𝑧) ∧ (abs‘Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ 𝑇) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ≤ sup(𝑇, ℝ, < )) |
289 | 251, 287,
288 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ≤ sup(𝑇, ℝ, < )) |
290 | 224, 225,
125 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤
(abs‘𝐴))) |
291 | 90, 78 | syldan 590 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℝ) |
292 | 36 | absge0d 15084 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 0 ≤ (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
293 | 90, 292 | syldan 590 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → 0 ≤ (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
294 | 291, 293 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ((abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℝ ∧ 0 ≤
(abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵))) |
295 | 212 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → sup(𝑇, ℝ, < ) ∈
ℝ) |
296 | | lemul12a 11763 |
. . . . . . . . . . 11
⊢
(((((abs‘𝐴)
∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈ ℝ)
∧ (((abs‘Σ𝑘
∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℝ ∧ 0 ≤
(abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∧ sup(𝑇, ℝ, < ) ∈ ℝ)) →
(((abs‘𝐴) ≤
(((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∧
(abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ≤ sup(𝑇, ℝ, < )) → ((abs‘𝐴) ·
(abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, <
)))) |
297 | 290, 227,
294, 295, 296 | syl22anc 835 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (((abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∧
(abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ≤ sup(𝑇, ℝ, < )) → ((abs‘𝐴) ·
(abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, <
)))) |
298 | 250, 289,
297 | mp2and 695 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, <
))) |
299 | 82, 91, 223, 298 | fsumle 15439 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, <
))) |
300 | 222 | recnd 10934 |
. . . . . . . . . . 11
⊢ (𝜑 → ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) ∈
ℂ) |
301 | 300 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) ∈
ℂ) |
302 | | fsumconst 15430 |
. . . . . . . . . 10
⊢
(((((𝑚 − 𝑠) + 1)...𝑚) ∈ Fin ∧ ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) ∈
ℂ) → Σ𝑗
∈ (((𝑚 − 𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) =
((♯‘(((𝑚
− 𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, <
)))) |
303 | 82, 301, 302 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) =
((♯‘(((𝑚
− 𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, <
)))) |
304 | | 1zzd 12281 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 1 ∈ ℤ) |
305 | 56 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑠 ∈ ℤ) |
306 | | fzen 13202 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℤ ∧ 𝑠
∈ ℤ ∧ (𝑚
− 𝑠) ∈ ℤ)
→ (1...𝑠) ≈ ((1
+ (𝑚 − 𝑠))...(𝑠 + (𝑚 − 𝑠)))) |
307 | 304, 305,
69, 306 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (1...𝑠) ≈ ((1 + (𝑚 − 𝑠))...(𝑠 + (𝑚 − 𝑠)))) |
308 | | ax-1cn 10860 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
309 | 69 | zcnd 12356 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − 𝑠) ∈ ℂ) |
310 | | addcom 11091 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℂ ∧ (𝑚
− 𝑠) ∈ ℂ)
→ (1 + (𝑚 −
𝑠)) = ((𝑚 − 𝑠) + 1)) |
311 | 308, 309,
310 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (1 + (𝑚 − 𝑠)) = ((𝑚 − 𝑠) + 1)) |
312 | 259, 258 | pncan3d 11265 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑠 + (𝑚 − 𝑠)) = 𝑚) |
313 | 311, 312 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((1 + (𝑚 − 𝑠))...(𝑠 + (𝑚 − 𝑠))) = (((𝑚 − 𝑠) + 1)...𝑚)) |
314 | 307, 313 | breqtrd 5096 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (1...𝑠) ≈ (((𝑚 − 𝑠) + 1)...𝑚)) |
315 | | fzfid 13621 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (1...𝑠) ∈ Fin) |
316 | | hashen 13989 |
. . . . . . . . . . . . 13
⊢
(((1...𝑠) ∈ Fin
∧ (((𝑚 − 𝑠) + 1)...𝑚) ∈ Fin) →
((♯‘(1...𝑠)) =
(♯‘(((𝑚 −
𝑠) + 1)...𝑚)) ↔ (1...𝑠) ≈ (((𝑚 − 𝑠) + 1)...𝑚))) |
317 | 315, 82, 316 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((♯‘(1...𝑠)) = (♯‘(((𝑚 − 𝑠) + 1)...𝑚)) ↔ (1...𝑠) ≈ (((𝑚 − 𝑠) + 1)...𝑚))) |
318 | 314, 317 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (♯‘(1...𝑠)) = (♯‘(((𝑚 − 𝑠) + 1)...𝑚))) |
319 | | hashfz1 13988 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ℕ0
→ (♯‘(1...𝑠)) = 𝑠) |
320 | 47, 319 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (♯‘(1...𝑠)) = 𝑠) |
321 | 318, 320 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (♯‘(((𝑚 − 𝑠) + 1)...𝑚)) = 𝑠) |
322 | 321 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((♯‘(((𝑚 − 𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))) = (𝑠 · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, <
)))) |
323 | 212 | recnd 10934 |
. . . . . . . . . . . 12
⊢ (𝜑 → sup(𝑇, ℝ, < ) ∈
ℂ) |
324 | 215 | rpcnne0d 12710 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((sup(𝑇, ℝ, < ) + 1) ∈ ℂ ∧
(sup(𝑇, ℝ, < ) +
1) ≠ 0)) |
325 | | div23 11582 |
. . . . . . . . . . . 12
⊢ (((𝐸 / 2) ∈ ℂ ∧
sup(𝑇, ℝ, < )
∈ ℂ ∧ ((sup(𝑇, ℝ, < ) + 1) ∈ ℂ ∧
(sup(𝑇, ℝ, < ) +
1) ≠ 0)) → (((𝐸 /
2) · sup(𝑇, ℝ,
< )) / (sup(𝑇, ℝ,
< ) + 1)) = (((𝐸 / 2) /
(sup(𝑇, ℝ, < ) +
1)) · sup(𝑇,
ℝ, < ))) |
326 | 156, 323,
324, 325 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) = (((𝐸 / 2) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, <
))) |
327 | 56 | zcnd 12356 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑠 ∈ ℂ) |
328 | 219 | rpcnd 12703 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐸 / 2) / 𝑠) ∈ ℂ) |
329 | | divass 11581 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℂ ∧ ((𝐸 / 2) / 𝑠) ∈ ℂ ∧ ((sup(𝑇, ℝ, < ) + 1) ∈
ℂ ∧ (sup(𝑇,
ℝ, < ) + 1) ≠ 0)) → ((𝑠 · ((𝐸 / 2) / 𝑠)) / (sup(𝑇, ℝ, < ) + 1)) = (𝑠 · (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) |
330 | 327, 328,
324, 329 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑠 · ((𝐸 / 2) / 𝑠)) / (sup(𝑇, ℝ, < ) + 1)) = (𝑠 · (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) |
331 | 5 | nnne0d 11953 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑠 ≠ 0) |
332 | 156, 327,
331 | divcan2d 11683 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑠 · ((𝐸 / 2) / 𝑠)) = (𝐸 / 2)) |
333 | 332 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑠 · ((𝐸 / 2) / 𝑠)) / (sup(𝑇, ℝ, < ) + 1)) = ((𝐸 / 2) / (sup(𝑇, ℝ, < ) + 1))) |
334 | 330, 333 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑠 · (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) = ((𝐸 / 2) / (sup(𝑇, ℝ, < ) + 1))) |
335 | 334 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑠 · (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) · sup(𝑇, ℝ, < )) = (((𝐸 / 2) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, <
))) |
336 | 220 | rpcnd 12703 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈
ℂ) |
337 | 327, 336,
323 | mulassd 10929 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑠 · (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) · sup(𝑇, ℝ, < )) = (𝑠 · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, <
)))) |
338 | 326, 335,
337 | 3eqtr2rd 2785 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑠 · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))) = (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) +
1))) |
339 | 338 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑠 · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))) = (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) +
1))) |
340 | 303, 322,
339 | 3eqtrd 2782 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) = (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) +
1))) |
341 | 299, 340 | breqtrd 5096 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1))) |
342 | | peano2re 11078 |
. . . . . . . . . . 11
⊢
(sup(𝑇, ℝ,
< ) ∈ ℝ → (sup(𝑇, ℝ, < ) + 1) ∈
ℝ) |
343 | 212, 342 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (sup(𝑇, ℝ, < ) + 1) ∈
ℝ) |
344 | 212 | ltp1d 11835 |
. . . . . . . . . 10
⊢ (𝜑 → sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) +
1)) |
345 | 212, 343,
93, 344 | ltmul2dd 12757 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸 / 2) · sup(𝑇, ℝ, < )) < ((𝐸 / 2) · (sup(𝑇, ℝ, < ) + 1))) |
346 | 213, 94, 215 | ltdivmul2d 12753 |
. . . . . . . . 9
⊢ (𝜑 → ((((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) < (𝐸 / 2) ↔ ((𝐸 / 2) · sup(𝑇, ℝ, < )) < ((𝐸 / 2) · (sup(𝑇, ℝ, < ) + 1)))) |
347 | 345, 346 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) < (𝐸 / 2)) |
348 | 347 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) < (𝐸 / 2)) |
349 | 92, 217, 95, 341, 348 | lelttrd 11063 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < (𝐸 / 2)) |
350 | 81, 92, 95, 95, 208, 349 | lt2addd 11528 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵))) < ((𝐸 / 2) + (𝐸 / 2))) |
351 | 14, 36 | absmuld 15094 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) = ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵))) |
352 | 351 | sumeq2dv 15343 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) = Σ𝑗 ∈ (0...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵))) |
353 | 69 | zred 12355 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − 𝑠) ∈ ℝ) |
354 | 353 | ltp1d 11835 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − 𝑠) < ((𝑚 − 𝑠) + 1)) |
355 | | fzdisj 13212 |
. . . . . . . 8
⊢ ((𝑚 − 𝑠) < ((𝑚 − 𝑠) + 1) → ((0...(𝑚 − 𝑠)) ∩ (((𝑚 − 𝑠) + 1)...𝑚)) = ∅) |
356 | 354, 355 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((0...(𝑚 − 𝑠)) ∩ (((𝑚 − 𝑠) + 1)...𝑚)) = ∅) |
357 | | fzsplit 13211 |
. . . . . . . 8
⊢ ((𝑚 − 𝑠) ∈ (0...𝑚) → (0...𝑚) = ((0...(𝑚 − 𝑠)) ∪ (((𝑚 − 𝑠) + 1)...𝑚))) |
358 | 67, 357 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (0...𝑚) = ((0...(𝑚 − 𝑠)) ∪ (((𝑚 − 𝑠) + 1)...𝑚))) |
359 | 79 | recnd 10934 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℂ) |
360 | 356, 358,
10, 359 | fsumsplit 15381 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) = (Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)))) |
361 | 352, 360 | eqtr2d 2779 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵))) = Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵))) |
362 | 42 | rpcnd 12703 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ ℂ) |
363 | 362 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝐸 ∈ ℂ) |
364 | 363 | 2halvesd 12149 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸) |
365 | 350, 361,
364 | 3brtr3d 5101 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |
366 | 39, 41, 44, 45, 365 | lelttrd 11063 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |
367 | 366 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |
368 | | fveq2 6756 |
. . . 4
⊢ (𝑦 = (𝑠 + 𝑡) → (ℤ≥‘𝑦) =
(ℤ≥‘(𝑠 + 𝑡))) |
369 | 368 | raleqdv 3339 |
. . 3
⊢ (𝑦 = (𝑠 + 𝑡) → (∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸 ↔ ∀𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
370 | 369 | rspcev 3552 |
. 2
⊢ (((𝑠 + 𝑡) ∈ ℕ0 ∧
∀𝑚 ∈
(ℤ≥‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |
371 | 9, 367, 370 | syl2anc 583 |
1
⊢ (𝜑 → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |