MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mertenslem1 Structured version   Visualization version   GIF version

Theorem mertenslem1 15230
Description: Lemma for mertens 15232. (Contributed by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
mertens.1 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
mertens.2 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
mertens.3 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
mertens.4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
mertens.5 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
mertens.6 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
mertens.7 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
mertens.8 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
mertens.9 (𝜑𝐸 ∈ ℝ+)
mertens.10 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
mertens.11 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
mertens.12 (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))))
mertens.13 (𝜑 → (0 ≤ sup(𝑇, ℝ, < ) ∧ (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧)))
Assertion
Ref Expression
mertenslem1 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Distinct variable groups:   𝑗,𝑚,𝑛,𝑠,𝑡,𝑦,𝑧,𝐵   𝑗,𝑘,𝐺,𝑚,𝑛,𝑠,𝑦,𝑧   𝜑,𝑗,𝑘,𝑚,𝑦,𝑧   𝑡,𝑘,𝐴,𝑚,𝑛,𝑠,𝑦   𝑗,𝐸,𝑘,𝑚,𝑛,𝑠,𝑡,𝑦,𝑧   𝑗,𝐾,𝑘,𝑚,𝑛,𝑠,𝑡,𝑦,𝑧   𝑗,𝐹,𝑚,𝑛,𝑦   𝜓,𝑗,𝑘,𝑚,𝑛,𝑡,𝑦,𝑧   𝑤,𝑗,𝑇,𝑘,𝑚,𝑛,𝑡,𝑦,𝑧   𝑘,𝐻,𝑚,𝑦
Allowed substitution hints:   𝜑(𝑤,𝑡,𝑛,𝑠)   𝜓(𝑤,𝑠)   𝐴(𝑧,𝑤,𝑗)   𝐵(𝑤,𝑘)   𝑇(𝑠)   𝐸(𝑤)   𝐹(𝑧,𝑤,𝑡,𝑘,𝑠)   𝐺(𝑤,𝑡)   𝐻(𝑧,𝑤,𝑡,𝑗,𝑛,𝑠)   𝐾(𝑤)

Proof of Theorem mertenslem1
StepHypRef Expression
1 mertens.12 . . . . . . 7 (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))))
21simpld 495 . . . . . 6 (𝜑𝜓)
3 mertens.11 . . . . . 6 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
42, 3sylib 219 . . . . 5 (𝜑 → (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
54simpld 495 . . . 4 (𝜑𝑠 ∈ ℕ)
65nnnn0d 11944 . . 3 (𝜑𝑠 ∈ ℕ0)
71simprd 496 . . . 4 (𝜑 → (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
87simpld 495 . . 3 (𝜑𝑡 ∈ ℕ0)
96, 8nn0addcld 11948 . 2 (𝜑 → (𝑠 + 𝑡) ∈ ℕ0)
10 fzfid 13331 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...𝑚) ∈ Fin)
11 simpl 483 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝜑)
12 elfznn0 12990 . . . . . . . 8 (𝑗 ∈ (0...𝑚) → 𝑗 ∈ ℕ0)
13 mertens.3 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
1411, 12, 13syl2an 595 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 𝐴 ∈ ℂ)
15 eqid 2826 . . . . . . . 8 (ℤ‘((𝑚𝑗) + 1)) = (ℤ‘((𝑚𝑗) + 1))
16 fznn0sub 12929 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑚) → (𝑚𝑗) ∈ ℕ0)
1716adantl 482 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚𝑗) ∈ ℕ0)
18 peano2nn0 11926 . . . . . . . . . 10 ((𝑚𝑗) ∈ ℕ0 → ((𝑚𝑗) + 1) ∈ ℕ0)
1917, 18syl 17 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚𝑗) + 1) ∈ ℕ0)
2019nn0zd 12074 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚𝑗) + 1) ∈ ℤ)
21 simplll 771 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝜑)
22 eluznn0 12306 . . . . . . . . . 10 ((((𝑚𝑗) + 1) ∈ ℕ0𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
2319, 22sylan 580 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
24 mertens.4 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
2521, 23, 24syl2anc 584 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → (𝐺𝑘) = 𝐵)
26 mertens.5 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
2721, 23, 26syl2anc 584 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝐵 ∈ ℂ)
28 mertens.8 . . . . . . . . . 10 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
2928ad2antrr 722 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → seq0( + , 𝐺) ∈ dom ⇝ )
30 nn0uz 12269 . . . . . . . . . 10 0 = (ℤ‘0)
31 simpll 763 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 𝜑)
3224, 26eqeltrd 2918 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
3331, 32sylan 580 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
3430, 19, 33iserex 15003 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ ))
3529, 34mpbid 233 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ )
3615, 20, 25, 27, 35isumcl 15106 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 ∈ ℂ)
3714, 36mulcld 10650 . . . . . 6 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℂ)
3810, 37fsumcl 15080 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℂ)
3938abscld 14786 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
4037abscld 14786 . . . . 5 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
4110, 40fsumrecl 15081 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
42 mertens.9 . . . . . 6 (𝜑𝐸 ∈ ℝ+)
4342rpred 12421 . . . . 5 (𝜑𝐸 ∈ ℝ)
4443adantr 481 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝐸 ∈ ℝ)
4510, 37fsumabs 15146 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
46 fzfid 13331 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...(𝑚𝑠)) ∈ Fin)
476adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℕ0)
4847nn0ge0d 11947 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 0 ≤ 𝑠)
49 eluzelz 12242 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ‘(𝑠 + 𝑡)) → 𝑚 ∈ ℤ)
5049adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ ℤ)
5150zred 12076 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ ℝ)
5247nn0red 11945 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℝ)
5351, 52subge02d 11221 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0 ≤ 𝑠 ↔ (𝑚𝑠) ≤ 𝑚))
5448, 53mpbid 233 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ≤ 𝑚)
5547, 30syl6eleq 2928 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ (ℤ‘0))
565nnzd 12075 . . . . . . . . . . . . . . . . . 18 (𝜑𝑠 ∈ ℤ)
57 uzid 12247 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℤ → 𝑠 ∈ (ℤ𝑠))
5856, 57syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑠 ∈ (ℤ𝑠))
59 uzaddcl 12293 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ (ℤ𝑠) ∧ 𝑡 ∈ ℕ0) → (𝑠 + 𝑡) ∈ (ℤ𝑠))
6058, 8, 59syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑠 + 𝑡) ∈ (ℤ𝑠))
61 eqid 2826 . . . . . . . . . . . . . . . . 17 (ℤ𝑠) = (ℤ𝑠)
6261uztrn2 12251 . . . . . . . . . . . . . . . 16 (((𝑠 + 𝑡) ∈ (ℤ𝑠) ∧ 𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ𝑠))
6360, 62sylan 580 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ𝑠))
64 elfzuzb 12892 . . . . . . . . . . . . . . 15 (𝑠 ∈ (0...𝑚) ↔ (𝑠 ∈ (ℤ‘0) ∧ 𝑚 ∈ (ℤ𝑠)))
6555, 63, 64sylanbrc 583 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ (0...𝑚))
66 fznn0sub2 13004 . . . . . . . . . . . . . 14 (𝑠 ∈ (0...𝑚) → (𝑚𝑠) ∈ (0...𝑚))
6765, 66syl 17 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ (0...𝑚))
68 elfzelz 12898 . . . . . . . . . . . . 13 ((𝑚𝑠) ∈ (0...𝑚) → (𝑚𝑠) ∈ ℤ)
6967, 68syl 17 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℤ)
70 eluz 12246 . . . . . . . . . . . 12 (((𝑚𝑠) ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ‘(𝑚𝑠)) ↔ (𝑚𝑠) ≤ 𝑚))
7169, 50, 70syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚 ∈ (ℤ‘(𝑚𝑠)) ↔ (𝑚𝑠) ≤ 𝑚))
7254, 71mpbird 258 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ‘(𝑚𝑠)))
73 fzss2 12937 . . . . . . . . . 10 (𝑚 ∈ (ℤ‘(𝑚𝑠)) → (0...(𝑚𝑠)) ⊆ (0...𝑚))
7472, 73syl 17 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...(𝑚𝑠)) ⊆ (0...𝑚))
7574sselda 3971 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ∈ (0...𝑚))
7613abscld 14786 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
7711, 12, 76syl2an 595 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘𝐴) ∈ ℝ)
7836abscld 14786 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
7977, 78remulcld 10660 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
8075, 79syldan 591 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
8146, 80fsumrecl 15081 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
82 fzfid 13331 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝑚𝑠) + 1)...𝑚) ∈ Fin)
83 elfznn0 12990 . . . . . . . . . . . . 13 ((𝑚𝑠) ∈ (0...𝑚) → (𝑚𝑠) ∈ ℕ0)
8467, 83syl 17 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℕ0)
85 peano2nn0 11926 . . . . . . . . . . . 12 ((𝑚𝑠) ∈ ℕ0 → ((𝑚𝑠) + 1) ∈ ℕ0)
8684, 85syl 17 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ ℕ0)
8786, 30syl6eleq 2928 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ (ℤ‘0))
88 fzss1 12936 . . . . . . . . . 10 (((𝑚𝑠) + 1) ∈ (ℤ‘0) → (((𝑚𝑠) + 1)...𝑚) ⊆ (0...𝑚))
8987, 88syl 17 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝑚𝑠) + 1)...𝑚) ⊆ (0...𝑚))
9089sselda 3971 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ (0...𝑚))
9190, 79syldan 591 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
9282, 91fsumrecl 15081 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
9342rphalfcld 12433 . . . . . . . 8 (𝜑 → (𝐸 / 2) ∈ ℝ+)
9493rpred 12421 . . . . . . 7 (𝜑 → (𝐸 / 2) ∈ ℝ)
9594adantr 481 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝐸 / 2) ∈ ℝ)
96 elfznn0 12990 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑚𝑠)) → 𝑗 ∈ ℕ0)
9711, 96, 76syl2an 595 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘𝐴) ∈ ℝ)
9846, 97fsumrecl 15081 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ∈ ℝ)
9998, 95remulcld 10660 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) ∈ ℝ)
100 0zd 11982 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℤ)
101 eqidd 2827 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (𝐾𝑗))
102 mertens.2 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
103102, 76eqeltrd 2918 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) ∈ ℝ)
104 mertens.7 . . . . . . . . . . 11 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
10530, 100, 101, 103, 104isumrecl 15110 . . . . . . . . . 10 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
10613absge0d 14794 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
107106, 102breqtrrd 5091 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (𝐾𝑗))
10830, 100, 101, 103, 104, 107isumge0 15111 . . . . . . . . . 10 (𝜑 → 0 ≤ Σ𝑗 ∈ ℕ0 (𝐾𝑗))
109105, 108ge0p1rpd 12451 . . . . . . . . 9 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ+)
110109adantr 481 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ+)
11199, 110rerpdivcld 12452 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ)
11293, 109rpdivcld 12438 . . . . . . . . . . . 12 (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ+)
113112rpred 12421 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ)
114113ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ)
11597, 114remulcld 10660 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) ∈ ℝ)
11675, 20syldan 591 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝑚𝑗) + 1) ∈ ℤ)
117 simplll 771 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝜑)
11875, 19syldan 591 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝑚𝑗) + 1) ∈ ℕ0)
119118, 22sylan 580 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
120117, 119, 24syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → (𝐺𝑘) = 𝐵)
121117, 119, 26syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝐵 ∈ ℂ)
12275, 35syldan 591 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ )
12315, 116, 120, 121, 122isumcl 15106 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 ∈ ℂ)
124123abscld 14786 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
12576, 106jca 512 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
12611, 96, 125syl2an 595 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
127120sumeq2dv 15050 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)
128127fveq2d 6671 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
129 fvoveq1 7171 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑚𝑗) → (ℤ‘(𝑛 + 1)) = (ℤ‘((𝑚𝑗) + 1)))
130129sumeq1d 15048 . . . . . . . . . . . . . . 15 (𝑛 = (𝑚𝑗) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘))
131130fveq2d 6671 . . . . . . . . . . . . . 14 (𝑛 = (𝑚𝑗) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)))
132131breq1d 5073 . . . . . . . . . . . . 13 (𝑛 = (𝑚𝑗) → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
1334simprd 496 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
134133ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
135 elfzelz 12898 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...(𝑚𝑠)) → 𝑗 ∈ ℤ)
136135adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ∈ ℤ)
137136zred 12076 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ∈ ℝ)
13849ad2antlr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑚 ∈ ℤ)
139138zred 12076 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑚 ∈ ℝ)
14056ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑠 ∈ ℤ)
141140zred 12076 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑠 ∈ ℝ)
142 elfzle2 12901 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...(𝑚𝑠)) → 𝑗 ≤ (𝑚𝑠))
143142adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ≤ (𝑚𝑠))
144137, 139, 141, 143lesubd 11233 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑠 ≤ (𝑚𝑗))
145138, 136zsubcld 12081 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (𝑚𝑗) ∈ ℤ)
146 eluz 12246 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℤ ∧ (𝑚𝑗) ∈ ℤ) → ((𝑚𝑗) ∈ (ℤ𝑠) ↔ 𝑠 ≤ (𝑚𝑗)))
147140, 145, 146syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝑚𝑗) ∈ (ℤ𝑠) ↔ 𝑠 ≤ (𝑚𝑗)))
148144, 147mpbird 258 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (𝑚𝑗) ∈ (ℤ𝑠))
149132, 134, 148rspcdva 3629 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
150128, 149eqbrtrrd 5087 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
151124, 114, 150ltled 10777 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
152 lemul2a 11484 . . . . . . . . . 10 ((((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ ∧ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
153124, 114, 126, 151, 152syl31anc 1367 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
15446, 80, 115, 153fsumle 15144 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
15598recnd 10658 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ∈ ℂ)
15693rpcnd 12423 . . . . . . . . . . 11 (𝜑 → (𝐸 / 2) ∈ ℂ)
157156adantr 481 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝐸 / 2) ∈ ℂ)
158 peano2re 10802 . . . . . . . . . . . . 13 𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ)
159105, 158syl 17 . . . . . . . . . . . 12 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ)
160159recnd 10658 . . . . . . . . . . 11 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℂ)
161160adantr 481 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℂ)
162109rpne0d 12426 . . . . . . . . . . 11 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ≠ 0)
163162adantr 481 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ≠ 0)
164155, 157, 161, 163divassd 11440 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) = (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
165 fveq2 6667 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (𝐾𝑛) = (𝐾𝑗))
166165cbvsumv 15043 . . . . . . . . . . . . . . . 16 Σ𝑛 ∈ ℕ0 (𝐾𝑛) = Σ𝑗 ∈ ℕ0 (𝐾𝑗)
167166oveq1i 7158 . . . . . . . . . . . . . . 15 𝑛 ∈ ℕ0 (𝐾𝑛) + 1) = (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)
168167oveq2i 7159 . . . . . . . . . . . . . 14 ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) = ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
169168, 112eqeltrid 2922 . . . . . . . . . . . . 13 (𝜑 → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) ∈ ℝ+)
170169rpcnd 12423 . . . . . . . . . . . 12 (𝜑 → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) ∈ ℂ)
171170adantr 481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) ∈ ℂ)
17276recnd 10658 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℂ)
17311, 96, 172syl2an 595 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘𝐴) ∈ ℂ)
17446, 171, 173fsummulc1 15130 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))))
175168oveq2i 7159 . . . . . . . . . 10 𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
176168oveq2i 7159 . . . . . . . . . . . 12 ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
177176a1i 11 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑚𝑠)) → ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
178177sumeq2i 15046 . . . . . . . . . 10 Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
179174, 175, 1783eqtr3g 2884 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
180164, 179eqtrd 2861 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
181154, 180breqtrrd 5091 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
182105adantr 481 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
183159adantr 481 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ)
184 0zd 11982 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 0 ∈ ℤ)
185 fz0ssnn0 12992 . . . . . . . . . . . . 13 (0...(𝑚𝑠)) ⊆ ℕ0
186185a1i 11 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...(𝑚𝑠)) ⊆ ℕ0)
187102adantlr 711 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
18876adantlr 711 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
189106adantlr 711 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
190104adantr 481 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → seq0( + , 𝐾) ∈ dom ⇝ )
19130, 184, 46, 186, 187, 188, 189, 190isumless 15190 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ≤ Σ𝑗 ∈ ℕ0 (abs‘𝐴))
192102sumeq2dv 15050 . . . . . . . . . . . 12 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) = Σ𝑗 ∈ ℕ0 (abs‘𝐴))
193192adantr 481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾𝑗) = Σ𝑗 ∈ ℕ0 (abs‘𝐴))
194191, 193breqtrrd 5091 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ≤ Σ𝑗 ∈ ℕ0 (𝐾𝑗))
195105ltp1d 11559 . . . . . . . . . . 11 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
196195adantr 481 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾𝑗) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
19798, 182, 183, 194, 196lelttrd 10787 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
19893rpregt0d 12427 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2)))
199198adantr 481 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2)))
200 ltmul1 11479 . . . . . . . . . 10 ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ∈ ℝ ∧ (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
20198, 183, 199, 200syl3anc 1365 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
202197, 201mpbid 233 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2)))
203109rpregt0d 12427 . . . . . . . . . 10 (𝜑 → ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ 0 < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
204203adantr 481 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ 0 < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
205 ltdivmul 11504 . . . . . . . . 9 (((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) ∈ ℝ ∧ (𝐸 / 2) ∈ ℝ ∧ ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ 0 < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) → (((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) < (𝐸 / 2) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
20699, 95, 204, 205syl3anc 1365 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) < (𝐸 / 2) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
207202, 206mpbird 258 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) < (𝐸 / 2))
20881, 111, 95, 181, 207lelttrd 10787 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < (𝐸 / 2))
209 mertens.13 . . . . . . . . . . . 12 (𝜑 → (0 ≤ sup(𝑇, ℝ, < ) ∧ (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧)))
210209simprd 496 . . . . . . . . . . 11 (𝜑 → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧))
211 suprcl 11590 . . . . . . . . . . 11 ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧) → sup(𝑇, ℝ, < ) ∈ ℝ)
212210, 211syl 17 . . . . . . . . . 10 (𝜑 → sup(𝑇, ℝ, < ) ∈ ℝ)
21394, 212remulcld 10660 . . . . . . . . 9 (𝜑 → ((𝐸 / 2) · sup(𝑇, ℝ, < )) ∈ ℝ)
214209simpld 495 . . . . . . . . . 10 (𝜑 → 0 ≤ sup(𝑇, ℝ, < ))
215212, 214ge0p1rpd 12451 . . . . . . . . 9 (𝜑 → (sup(𝑇, ℝ, < ) + 1) ∈ ℝ+)
216213, 215rerpdivcld 12452 . . . . . . . 8 (𝜑 → (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) ∈ ℝ)
217216adantr 481 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) ∈ ℝ)
2185nnrpd 12419 . . . . . . . . . . . . . 14 (𝜑𝑠 ∈ ℝ+)
21993, 218rpdivcld 12438 . . . . . . . . . . . . 13 (𝜑 → ((𝐸 / 2) / 𝑠) ∈ ℝ+)
220219, 215rpdivcld 12438 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈ ℝ+)
221220rpred 12421 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈ ℝ)
222221, 212remulcld 10660 . . . . . . . . . 10 (𝜑 → ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) ∈ ℝ)
223222ad2antrr 722 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) ∈ ℝ)
224 simpll 763 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝜑)
22590, 12syl 17 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ ℕ0)
226224, 225, 76syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘𝐴) ∈ ℝ)
227221ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈ ℝ)
228224, 225, 102syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝐾𝑗) = (abs‘𝐴))
229 fveq2 6667 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → (𝐾𝑚) = (𝐾𝑗))
230229breq1d 5073 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → ((𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ (𝐾𝑗) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
2317simprd 496 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))
232231ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))
233 elfzuz 12894 . . . . . . . . . . . . . 14 (𝑗 ∈ (((𝑚𝑠) + 1)...𝑚) → 𝑗 ∈ (ℤ‘((𝑚𝑠) + 1)))
234 eluzle 12245 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ‘(𝑠 + 𝑡)) → (𝑠 + 𝑡) ≤ 𝑚)
235234adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑠 + 𝑡) ≤ 𝑚)
2368nn0zd 12074 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑡 ∈ ℤ)
237236adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑡 ∈ ℤ)
238237zred 12076 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑡 ∈ ℝ)
23952, 238, 51leaddsub2d 11231 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑠 + 𝑡) ≤ 𝑚𝑡 ≤ (𝑚𝑠)))
240235, 239mpbid 233 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑡 ≤ (𝑚𝑠))
241 eluz 12246 . . . . . . . . . . . . . . . . 17 ((𝑡 ∈ ℤ ∧ (𝑚𝑠) ∈ ℤ) → ((𝑚𝑠) ∈ (ℤ𝑡) ↔ 𝑡 ≤ (𝑚𝑠)))
242237, 69, 241syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) ∈ (ℤ𝑡) ↔ 𝑡 ≤ (𝑚𝑠)))
243240, 242mpbird 258 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ (ℤ𝑡))
244 peano2uz 12290 . . . . . . . . . . . . . . 15 ((𝑚𝑠) ∈ (ℤ𝑡) → ((𝑚𝑠) + 1) ∈ (ℤ𝑡))
245243, 244syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ (ℤ𝑡))
246 uztrn 12250 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℤ‘((𝑚𝑠) + 1)) ∧ ((𝑚𝑠) + 1) ∈ (ℤ𝑡)) → 𝑗 ∈ (ℤ𝑡))
247233, 245, 246syl2anr 596 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ (ℤ𝑡))
248230, 232, 247rspcdva 3629 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝐾𝑗) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))
249228, 248eqbrtrrd 5087 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘𝐴) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))
250226, 227, 249ltled 10777 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))
251210ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧))
25251adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑚 ∈ ℝ)
253 peano2zm 12014 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℤ → (𝑠 − 1) ∈ ℤ)
25456, 253syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑠 − 1) ∈ ℤ)
255254zred 12076 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑠 − 1) ∈ ℝ)
256255ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑠 − 1) ∈ ℝ)
257225nn0red 11945 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ ℝ)
25850zcnd 12077 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ ℂ)
25952recnd 10658 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℂ)
260 1cnd 10625 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 1 ∈ ℂ)
261258, 259, 260subsubd 11014 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚 − (𝑠 − 1)) = ((𝑚𝑠) + 1))
262261adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚 − (𝑠 − 1)) = ((𝑚𝑠) + 1))
263 elfzle1 12900 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (((𝑚𝑠) + 1)...𝑚) → ((𝑚𝑠) + 1) ≤ 𝑗)
264263adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((𝑚𝑠) + 1) ≤ 𝑗)
265262, 264eqbrtrd 5085 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚 − (𝑠 − 1)) ≤ 𝑗)
266252, 256, 257, 265subled 11232 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ≤ (𝑠 − 1))
26790, 16syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ∈ ℕ0)
268267, 30syl6eleq 2928 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ∈ (ℤ‘0))
269254ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑠 − 1) ∈ ℤ)
270 elfz5 12890 . . . . . . . . . . . . . . 15 (((𝑚𝑗) ∈ (ℤ‘0) ∧ (𝑠 − 1) ∈ ℤ) → ((𝑚𝑗) ∈ (0...(𝑠 − 1)) ↔ (𝑚𝑗) ≤ (𝑠 − 1)))
271268, 269, 270syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((𝑚𝑗) ∈ (0...(𝑠 − 1)) ↔ (𝑚𝑗) ≤ (𝑠 − 1)))
272266, 271mpbird 258 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ∈ (0...(𝑠 − 1)))
273 simplll 771 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝜑)
27490, 19syldan 591 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((𝑚𝑗) + 1) ∈ ℕ0)
275274, 22sylan 580 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
276273, 275, 24syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → (𝐺𝑘) = 𝐵)
277276sumeq2dv 15050 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)
278277eqcomd 2832 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘))
279278fveq2d 6671 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)))
280131rspceeqv 3642 . . . . . . . . . . . . 13 (((𝑚𝑗) ∈ (0...(𝑠 − 1)) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘))) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
281272, 279, 280syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
282 fvex 6680 . . . . . . . . . . . . 13 (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ V
283 eqeq1 2830 . . . . . . . . . . . . . 14 (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
284283rexbidv 3302 . . . . . . . . . . . . 13 (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) → (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
285 mertens.10 . . . . . . . . . . . . 13 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
286282, 284, 285elab2 3674 . . . . . . . . . . . 12 ((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
287281, 286sylibr 235 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ 𝑇)
288 suprub 11591 . . . . . . . . . . 11 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ 𝑇) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ sup(𝑇, ℝ, < ))
289251, 287, 288syl2anc 584 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ sup(𝑇, ℝ, < ))
290224, 225, 125syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
29190, 78syldan 591 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
29236absge0d 14794 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
29390, 292syldan 591 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
294291, 293jca 512 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ ∧ 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
295212ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → sup(𝑇, ℝ, < ) ∈ ℝ)
296 lemul12a 11487 . . . . . . . . . . 11 (((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈ ℝ) ∧ (((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ ∧ 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∧ sup(𝑇, ℝ, < ) ∈ ℝ)) → (((abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ sup(𝑇, ℝ, < )) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))))
297290, 227, 294, 295, 296syl22anc 836 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (((abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ sup(𝑇, ℝ, < )) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))))
298250, 289, 297mp2and 695 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )))
29982, 91, 223, 298fsumle 15144 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )))
300222recnd 10658 . . . . . . . . . . 11 (𝜑 → ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) ∈ ℂ)
301300adantr 481 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) ∈ ℂ)
302 fsumconst 15135 . . . . . . . . . 10 (((((𝑚𝑠) + 1)...𝑚) ∈ Fin ∧ ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) ∈ ℂ) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) = ((♯‘(((𝑚𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))))
30382, 301, 302syl2anc 584 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) = ((♯‘(((𝑚𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))))
304 1zzd 12002 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 1 ∈ ℤ)
30556adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℤ)
306 fzen 12914 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ (𝑚𝑠) ∈ ℤ) → (1...𝑠) ≈ ((1 + (𝑚𝑠))...(𝑠 + (𝑚𝑠))))
307304, 305, 69, 306syl3anc 1365 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1...𝑠) ≈ ((1 + (𝑚𝑠))...(𝑠 + (𝑚𝑠))))
308 ax-1cn 10584 . . . . . . . . . . . . . . 15 1 ∈ ℂ
30969zcnd 12077 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℂ)
310 addcom 10815 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝑚𝑠) ∈ ℂ) → (1 + (𝑚𝑠)) = ((𝑚𝑠) + 1))
311308, 309, 310sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1 + (𝑚𝑠)) = ((𝑚𝑠) + 1))
312259, 258pncan3d 10989 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑠 + (𝑚𝑠)) = 𝑚)
313311, 312oveq12d 7166 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((1 + (𝑚𝑠))...(𝑠 + (𝑚𝑠))) = (((𝑚𝑠) + 1)...𝑚))
314307, 313breqtrd 5089 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1...𝑠) ≈ (((𝑚𝑠) + 1)...𝑚))
315 fzfid 13331 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1...𝑠) ∈ Fin)
316 hashen 13697 . . . . . . . . . . . . 13 (((1...𝑠) ∈ Fin ∧ (((𝑚𝑠) + 1)...𝑚) ∈ Fin) → ((♯‘(1...𝑠)) = (♯‘(((𝑚𝑠) + 1)...𝑚)) ↔ (1...𝑠) ≈ (((𝑚𝑠) + 1)...𝑚)))
317315, 82, 316syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((♯‘(1...𝑠)) = (♯‘(((𝑚𝑠) + 1)...𝑚)) ↔ (1...𝑠) ≈ (((𝑚𝑠) + 1)...𝑚)))
318314, 317mpbird 258 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (♯‘(1...𝑠)) = (♯‘(((𝑚𝑠) + 1)...𝑚)))
319 hashfz1 13696 . . . . . . . . . . . 12 (𝑠 ∈ ℕ0 → (♯‘(1...𝑠)) = 𝑠)
32047, 319syl 17 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (♯‘(1...𝑠)) = 𝑠)
321318, 320eqtr3d 2863 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (♯‘(((𝑚𝑠) + 1)...𝑚)) = 𝑠)
322321oveq1d 7163 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((♯‘(((𝑚𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))) = (𝑠 · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))))
323212recnd 10658 . . . . . . . . . . . 12 (𝜑 → sup(𝑇, ℝ, < ) ∈ ℂ)
324215rpcnne0d 12430 . . . . . . . . . . . 12 (𝜑 → ((sup(𝑇, ℝ, < ) + 1) ∈ ℂ ∧ (sup(𝑇, ℝ, < ) + 1) ≠ 0))
325 div23 11306 . . . . . . . . . . . 12 (((𝐸 / 2) ∈ ℂ ∧ sup(𝑇, ℝ, < ) ∈ ℂ ∧ ((sup(𝑇, ℝ, < ) + 1) ∈ ℂ ∧ (sup(𝑇, ℝ, < ) + 1) ≠ 0)) → (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) = (((𝐸 / 2) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )))
326156, 323, 324, 325syl3anc 1365 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) = (((𝐸 / 2) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )))
32756zcnd 12077 . . . . . . . . . . . . . 14 (𝜑𝑠 ∈ ℂ)
328219rpcnd 12423 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸 / 2) / 𝑠) ∈ ℂ)
329 divass 11305 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℂ ∧ ((𝐸 / 2) / 𝑠) ∈ ℂ ∧ ((sup(𝑇, ℝ, < ) + 1) ∈ ℂ ∧ (sup(𝑇, ℝ, < ) + 1) ≠ 0)) → ((𝑠 · ((𝐸 / 2) / 𝑠)) / (sup(𝑇, ℝ, < ) + 1)) = (𝑠 · (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
330327, 328, 324, 329syl3anc 1365 . . . . . . . . . . . . 13 (𝜑 → ((𝑠 · ((𝐸 / 2) / 𝑠)) / (sup(𝑇, ℝ, < ) + 1)) = (𝑠 · (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
3315nnne0d 11676 . . . . . . . . . . . . . . 15 (𝜑𝑠 ≠ 0)
332156, 327, 331divcan2d 11407 . . . . . . . . . . . . . 14 (𝜑 → (𝑠 · ((𝐸 / 2) / 𝑠)) = (𝐸 / 2))
333332oveq1d 7163 . . . . . . . . . . . . 13 (𝜑 → ((𝑠 · ((𝐸 / 2) / 𝑠)) / (sup(𝑇, ℝ, < ) + 1)) = ((𝐸 / 2) / (sup(𝑇, ℝ, < ) + 1)))
334330, 333eqtr3d 2863 . . . . . . . . . . . 12 (𝜑 → (𝑠 · (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) = ((𝐸 / 2) / (sup(𝑇, ℝ, < ) + 1)))
335334oveq1d 7163 . . . . . . . . . . 11 (𝜑 → ((𝑠 · (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) · sup(𝑇, ℝ, < )) = (((𝐸 / 2) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )))
336220rpcnd 12423 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈ ℂ)
337327, 336, 323mulassd 10653 . . . . . . . . . . 11 (𝜑 → ((𝑠 · (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) · sup(𝑇, ℝ, < )) = (𝑠 · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))))
338326, 335, 3373eqtr2rd 2868 . . . . . . . . . 10 (𝜑 → (𝑠 · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))) = (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)))
339338adantr 481 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑠 · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))) = (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)))
340303, 322, 3393eqtrd 2865 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) = (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)))
341299, 340breqtrd 5089 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)))
342 peano2re 10802 . . . . . . . . . . 11 (sup(𝑇, ℝ, < ) ∈ ℝ → (sup(𝑇, ℝ, < ) + 1) ∈ ℝ)
343212, 342syl 17 . . . . . . . . . 10 (𝜑 → (sup(𝑇, ℝ, < ) + 1) ∈ ℝ)
344212ltp1d 11559 . . . . . . . . . 10 (𝜑 → sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1))
345212, 343, 93, 344ltmul2dd 12477 . . . . . . . . 9 (𝜑 → ((𝐸 / 2) · sup(𝑇, ℝ, < )) < ((𝐸 / 2) · (sup(𝑇, ℝ, < ) + 1)))
346213, 94, 215ltdivmul2d 12473 . . . . . . . . 9 (𝜑 → ((((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) < (𝐸 / 2) ↔ ((𝐸 / 2) · sup(𝑇, ℝ, < )) < ((𝐸 / 2) · (sup(𝑇, ℝ, < ) + 1))))
347345, 346mpbird 258 . . . . . . . 8 (𝜑 → (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) < (𝐸 / 2))
348347adantr 481 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) < (𝐸 / 2))
34992, 217, 95, 341, 348lelttrd 10787 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < (𝐸 / 2))
35081, 92, 95, 95, 208, 349lt2addd 11252 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))) < ((𝐸 / 2) + (𝐸 / 2)))
35114, 36absmuld 14804 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) = ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
352351sumeq2dv 15050 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) = Σ𝑗 ∈ (0...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
35369zred 12076 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℝ)
354353ltp1d 11559 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) < ((𝑚𝑠) + 1))
355 fzdisj 12924 . . . . . . . 8 ((𝑚𝑠) < ((𝑚𝑠) + 1) → ((0...(𝑚𝑠)) ∩ (((𝑚𝑠) + 1)...𝑚)) = ∅)
356354, 355syl 17 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((0...(𝑚𝑠)) ∩ (((𝑚𝑠) + 1)...𝑚)) = ∅)
357 fzsplit 12923 . . . . . . . 8 ((𝑚𝑠) ∈ (0...𝑚) → (0...𝑚) = ((0...(𝑚𝑠)) ∪ (((𝑚𝑠) + 1)...𝑚)))
35867, 357syl 17 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...𝑚) = ((0...(𝑚𝑠)) ∪ (((𝑚𝑠) + 1)...𝑚)))
35979recnd 10658 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℂ)
360356, 358, 10, 359fsumsplit 15087 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) = (Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))))
361352, 360eqtr2d 2862 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))) = Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
36242rpcnd 12423 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
363362adantr 481 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝐸 ∈ ℂ)
3643632halvesd 11872 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
365350, 361, 3643brtr3d 5094 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
36639, 41, 44, 45, 365lelttrd 10787 . . 3 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
367366ralrimiva 3187 . 2 (𝜑 → ∀𝑚 ∈ (ℤ‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
368 fveq2 6667 . . . 4 (𝑦 = (𝑠 + 𝑡) → (ℤ𝑦) = (ℤ‘(𝑠 + 𝑡)))
369368raleqdv 3421 . . 3 (𝑦 = (𝑠 + 𝑡) → (∀𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸 ↔ ∀𝑚 ∈ (ℤ‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
370369rspcev 3627 . 2 (((𝑠 + 𝑡) ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
3719, 367, 370syl2anc 584 1 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  {cab 2804  wne 3021  wral 3143  wrex 3144  cun 3938  cin 3939  wss 3940  c0 4295   class class class wbr 5063  dom cdm 5554  cfv 6352  (class class class)co 7148  cen 8495  Fincfn 8498  supcsup 8893  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11627  2c2 11681  0cn0 11886  cz 11970  cuz 12232  +crp 12379  ...cfz 12882  seqcseq 13359  chash 13680  abscabs 14583  cli 14831  Σcsu 15032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-ico 12734  df-fz 12883  df-fzo 13024  df-fl 13152  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-rlim 14836  df-sum 15033
This theorem is referenced by:  mertenslem2  15231
  Copyright terms: Public domain W3C validator