MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mertenslem1 Structured version   Visualization version   GIF version

Theorem mertenslem1 15302
Description: Lemma for mertens 15304. (Contributed by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
mertens.1 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
mertens.2 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
mertens.3 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
mertens.4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
mertens.5 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
mertens.6 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
mertens.7 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
mertens.8 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
mertens.9 (𝜑𝐸 ∈ ℝ+)
mertens.10 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
mertens.11 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
mertens.12 (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))))
mertens.13 (𝜑 → (0 ≤ sup(𝑇, ℝ, < ) ∧ (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧)))
Assertion
Ref Expression
mertenslem1 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Distinct variable groups:   𝑗,𝑚,𝑛,𝑠,𝑡,𝑦,𝑧,𝐵   𝑗,𝑘,𝐺,𝑚,𝑛,𝑠,𝑦,𝑧   𝜑,𝑗,𝑘,𝑚,𝑦,𝑧   𝑡,𝑘,𝐴,𝑚,𝑛,𝑠,𝑦   𝑗,𝐸,𝑘,𝑚,𝑛,𝑠,𝑡,𝑦,𝑧   𝑗,𝐾,𝑘,𝑚,𝑛,𝑠,𝑡,𝑦,𝑧   𝑗,𝐹,𝑚,𝑛,𝑦   𝜓,𝑗,𝑘,𝑚,𝑛,𝑡,𝑦,𝑧   𝑤,𝑗,𝑇,𝑘,𝑚,𝑛,𝑡,𝑦,𝑧   𝑘,𝐻,𝑚,𝑦
Allowed substitution hints:   𝜑(𝑤,𝑡,𝑛,𝑠)   𝜓(𝑤,𝑠)   𝐴(𝑧,𝑤,𝑗)   𝐵(𝑤,𝑘)   𝑇(𝑠)   𝐸(𝑤)   𝐹(𝑧,𝑤,𝑡,𝑘,𝑠)   𝐺(𝑤,𝑡)   𝐻(𝑧,𝑤,𝑡,𝑗,𝑛,𝑠)   𝐾(𝑤)

Proof of Theorem mertenslem1
StepHypRef Expression
1 mertens.12 . . . . . . 7 (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))))
21simpld 498 . . . . . 6 (𝜑𝜓)
3 mertens.11 . . . . . 6 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
42, 3sylib 221 . . . . 5 (𝜑 → (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
54simpld 498 . . . 4 (𝜑𝑠 ∈ ℕ)
65nnnn0d 12008 . . 3 (𝜑𝑠 ∈ ℕ0)
71simprd 499 . . . 4 (𝜑 → (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
87simpld 498 . . 3 (𝜑𝑡 ∈ ℕ0)
96, 8nn0addcld 12012 . 2 (𝜑 → (𝑠 + 𝑡) ∈ ℕ0)
10 fzfid 13404 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...𝑚) ∈ Fin)
11 simpl 486 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝜑)
12 elfznn0 13063 . . . . . . . 8 (𝑗 ∈ (0...𝑚) → 𝑗 ∈ ℕ0)
13 mertens.3 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
1411, 12, 13syl2an 598 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 𝐴 ∈ ℂ)
15 eqid 2759 . . . . . . . 8 (ℤ‘((𝑚𝑗) + 1)) = (ℤ‘((𝑚𝑗) + 1))
16 fznn0sub 13002 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑚) → (𝑚𝑗) ∈ ℕ0)
1716adantl 485 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚𝑗) ∈ ℕ0)
18 peano2nn0 11988 . . . . . . . . . 10 ((𝑚𝑗) ∈ ℕ0 → ((𝑚𝑗) + 1) ∈ ℕ0)
1917, 18syl 17 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚𝑗) + 1) ∈ ℕ0)
2019nn0zd 12138 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚𝑗) + 1) ∈ ℤ)
21 simplll 774 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝜑)
22 eluznn0 12371 . . . . . . . . . 10 ((((𝑚𝑗) + 1) ∈ ℕ0𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
2319, 22sylan 583 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
24 mertens.4 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
2521, 23, 24syl2anc 587 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → (𝐺𝑘) = 𝐵)
26 mertens.5 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
2721, 23, 26syl2anc 587 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝐵 ∈ ℂ)
28 mertens.8 . . . . . . . . . 10 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
2928ad2antrr 725 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → seq0( + , 𝐺) ∈ dom ⇝ )
30 nn0uz 12334 . . . . . . . . . 10 0 = (ℤ‘0)
31 simpll 766 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 𝜑)
3224, 26eqeltrd 2853 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
3331, 32sylan 583 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
3430, 19, 33iserex 15075 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ ))
3529, 34mpbid 235 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ )
3615, 20, 25, 27, 35isumcl 15178 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 ∈ ℂ)
3714, 36mulcld 10713 . . . . . 6 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℂ)
3810, 37fsumcl 15152 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℂ)
3938abscld 14858 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
4037abscld 14858 . . . . 5 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
4110, 40fsumrecl 15153 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
42 mertens.9 . . . . . 6 (𝜑𝐸 ∈ ℝ+)
4342rpred 12486 . . . . 5 (𝜑𝐸 ∈ ℝ)
4443adantr 484 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝐸 ∈ ℝ)
4510, 37fsumabs 15218 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
46 fzfid 13404 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...(𝑚𝑠)) ∈ Fin)
476adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℕ0)
4847nn0ge0d 12011 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 0 ≤ 𝑠)
49 eluzelz 12306 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ‘(𝑠 + 𝑡)) → 𝑚 ∈ ℤ)
5049adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ ℤ)
5150zred 12140 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ ℝ)
5247nn0red 12009 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℝ)
5351, 52subge02d 11284 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0 ≤ 𝑠 ↔ (𝑚𝑠) ≤ 𝑚))
5448, 53mpbid 235 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ≤ 𝑚)
5547, 30eleqtrdi 2863 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ (ℤ‘0))
565nnzd 12139 . . . . . . . . . . . . . . . . . 18 (𝜑𝑠 ∈ ℤ)
57 uzid 12311 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℤ → 𝑠 ∈ (ℤ𝑠))
5856, 57syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑠 ∈ (ℤ𝑠))
59 uzaddcl 12358 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ (ℤ𝑠) ∧ 𝑡 ∈ ℕ0) → (𝑠 + 𝑡) ∈ (ℤ𝑠))
6058, 8, 59syl2anc 587 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑠 + 𝑡) ∈ (ℤ𝑠))
61 eqid 2759 . . . . . . . . . . . . . . . . 17 (ℤ𝑠) = (ℤ𝑠)
6261uztrn2 12315 . . . . . . . . . . . . . . . 16 (((𝑠 + 𝑡) ∈ (ℤ𝑠) ∧ 𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ𝑠))
6360, 62sylan 583 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ𝑠))
64 elfzuzb 12964 . . . . . . . . . . . . . . 15 (𝑠 ∈ (0...𝑚) ↔ (𝑠 ∈ (ℤ‘0) ∧ 𝑚 ∈ (ℤ𝑠)))
6555, 63, 64sylanbrc 586 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ (0...𝑚))
66 fznn0sub2 13077 . . . . . . . . . . . . . 14 (𝑠 ∈ (0...𝑚) → (𝑚𝑠) ∈ (0...𝑚))
6765, 66syl 17 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ (0...𝑚))
68 elfzelz 12970 . . . . . . . . . . . . 13 ((𝑚𝑠) ∈ (0...𝑚) → (𝑚𝑠) ∈ ℤ)
6967, 68syl 17 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℤ)
70 eluz 12310 . . . . . . . . . . . 12 (((𝑚𝑠) ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ‘(𝑚𝑠)) ↔ (𝑚𝑠) ≤ 𝑚))
7169, 50, 70syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚 ∈ (ℤ‘(𝑚𝑠)) ↔ (𝑚𝑠) ≤ 𝑚))
7254, 71mpbird 260 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ‘(𝑚𝑠)))
73 fzss2 13010 . . . . . . . . . 10 (𝑚 ∈ (ℤ‘(𝑚𝑠)) → (0...(𝑚𝑠)) ⊆ (0...𝑚))
7472, 73syl 17 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...(𝑚𝑠)) ⊆ (0...𝑚))
7574sselda 3895 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ∈ (0...𝑚))
7613abscld 14858 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
7711, 12, 76syl2an 598 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘𝐴) ∈ ℝ)
7836abscld 14858 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
7977, 78remulcld 10723 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
8075, 79syldan 594 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
8146, 80fsumrecl 15153 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
82 fzfid 13404 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝑚𝑠) + 1)...𝑚) ∈ Fin)
83 elfznn0 13063 . . . . . . . . . . . . 13 ((𝑚𝑠) ∈ (0...𝑚) → (𝑚𝑠) ∈ ℕ0)
8467, 83syl 17 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℕ0)
85 peano2nn0 11988 . . . . . . . . . . . 12 ((𝑚𝑠) ∈ ℕ0 → ((𝑚𝑠) + 1) ∈ ℕ0)
8684, 85syl 17 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ ℕ0)
8786, 30eleqtrdi 2863 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ (ℤ‘0))
88 fzss1 13009 . . . . . . . . . 10 (((𝑚𝑠) + 1) ∈ (ℤ‘0) → (((𝑚𝑠) + 1)...𝑚) ⊆ (0...𝑚))
8987, 88syl 17 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝑚𝑠) + 1)...𝑚) ⊆ (0...𝑚))
9089sselda 3895 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ (0...𝑚))
9190, 79syldan 594 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
9282, 91fsumrecl 15153 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
9342rphalfcld 12498 . . . . . . . 8 (𝜑 → (𝐸 / 2) ∈ ℝ+)
9493rpred 12486 . . . . . . 7 (𝜑 → (𝐸 / 2) ∈ ℝ)
9594adantr 484 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝐸 / 2) ∈ ℝ)
96 elfznn0 13063 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑚𝑠)) → 𝑗 ∈ ℕ0)
9711, 96, 76syl2an 598 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘𝐴) ∈ ℝ)
9846, 97fsumrecl 15153 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ∈ ℝ)
9998, 95remulcld 10723 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) ∈ ℝ)
100 0zd 12046 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℤ)
101 eqidd 2760 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (𝐾𝑗))
102 mertens.2 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
103102, 76eqeltrd 2853 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) ∈ ℝ)
104 mertens.7 . . . . . . . . . . 11 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
10530, 100, 101, 103, 104isumrecl 15182 . . . . . . . . . 10 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
10613absge0d 14866 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
107106, 102breqtrrd 5065 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (𝐾𝑗))
10830, 100, 101, 103, 104, 107isumge0 15183 . . . . . . . . . 10 (𝜑 → 0 ≤ Σ𝑗 ∈ ℕ0 (𝐾𝑗))
109105, 108ge0p1rpd 12516 . . . . . . . . 9 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ+)
110109adantr 484 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ+)
11199, 110rerpdivcld 12517 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ)
11293, 109rpdivcld 12503 . . . . . . . . . . . 12 (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ+)
113112rpred 12486 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ)
114113ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ)
11597, 114remulcld 10723 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) ∈ ℝ)
11675, 20syldan 594 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝑚𝑗) + 1) ∈ ℤ)
117 simplll 774 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝜑)
11875, 19syldan 594 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝑚𝑗) + 1) ∈ ℕ0)
119118, 22sylan 583 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
120117, 119, 24syl2anc 587 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → (𝐺𝑘) = 𝐵)
121117, 119, 26syl2anc 587 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝐵 ∈ ℂ)
12275, 35syldan 594 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ )
12315, 116, 120, 121, 122isumcl 15178 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 ∈ ℂ)
124123abscld 14858 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
12576, 106jca 515 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
12611, 96, 125syl2an 598 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
127120sumeq2dv 15122 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)
128127fveq2d 6668 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
129 fvoveq1 7180 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑚𝑗) → (ℤ‘(𝑛 + 1)) = (ℤ‘((𝑚𝑗) + 1)))
130129sumeq1d 15120 . . . . . . . . . . . . . . 15 (𝑛 = (𝑚𝑗) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘))
131130fveq2d 6668 . . . . . . . . . . . . . 14 (𝑛 = (𝑚𝑗) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)))
132131breq1d 5047 . . . . . . . . . . . . 13 (𝑛 = (𝑚𝑗) → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
1334simprd 499 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
134133ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
135 elfzelz 12970 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...(𝑚𝑠)) → 𝑗 ∈ ℤ)
136135adantl 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ∈ ℤ)
137136zred 12140 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ∈ ℝ)
13849ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑚 ∈ ℤ)
139138zred 12140 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑚 ∈ ℝ)
14056ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑠 ∈ ℤ)
141140zred 12140 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑠 ∈ ℝ)
142 elfzle2 12974 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...(𝑚𝑠)) → 𝑗 ≤ (𝑚𝑠))
143142adantl 485 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ≤ (𝑚𝑠))
144137, 139, 141, 143lesubd 11296 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑠 ≤ (𝑚𝑗))
145138, 136zsubcld 12145 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (𝑚𝑗) ∈ ℤ)
146 eluz 12310 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℤ ∧ (𝑚𝑗) ∈ ℤ) → ((𝑚𝑗) ∈ (ℤ𝑠) ↔ 𝑠 ≤ (𝑚𝑗)))
147140, 145, 146syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝑚𝑗) ∈ (ℤ𝑠) ↔ 𝑠 ≤ (𝑚𝑗)))
148144, 147mpbird 260 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (𝑚𝑗) ∈ (ℤ𝑠))
149132, 134, 148rspcdva 3546 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
150128, 149eqbrtrrd 5061 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
151124, 114, 150ltled 10840 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
152 lemul2a 11547 . . . . . . . . . 10 ((((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ ∧ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
153124, 114, 126, 151, 152syl31anc 1371 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
15446, 80, 115, 153fsumle 15216 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
15598recnd 10721 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ∈ ℂ)
15693rpcnd 12488 . . . . . . . . . . 11 (𝜑 → (𝐸 / 2) ∈ ℂ)
157156adantr 484 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝐸 / 2) ∈ ℂ)
158 peano2re 10865 . . . . . . . . . . . . 13 𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ)
159105, 158syl 17 . . . . . . . . . . . 12 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ)
160159recnd 10721 . . . . . . . . . . 11 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℂ)
161160adantr 484 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℂ)
162109rpne0d 12491 . . . . . . . . . . 11 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ≠ 0)
163162adantr 484 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ≠ 0)
164155, 157, 161, 163divassd 11503 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) = (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
165 fveq2 6664 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (𝐾𝑛) = (𝐾𝑗))
166165cbvsumv 15115 . . . . . . . . . . . . . . . 16 Σ𝑛 ∈ ℕ0 (𝐾𝑛) = Σ𝑗 ∈ ℕ0 (𝐾𝑗)
167166oveq1i 7167 . . . . . . . . . . . . . . 15 𝑛 ∈ ℕ0 (𝐾𝑛) + 1) = (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)
168167oveq2i 7168 . . . . . . . . . . . . . 14 ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) = ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
169168, 112eqeltrid 2857 . . . . . . . . . . . . 13 (𝜑 → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) ∈ ℝ+)
170169rpcnd 12488 . . . . . . . . . . . 12 (𝜑 → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) ∈ ℂ)
171170adantr 484 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) ∈ ℂ)
17276recnd 10721 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℂ)
17311, 96, 172syl2an 598 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘𝐴) ∈ ℂ)
17446, 171, 173fsummulc1 15202 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))))
175168oveq2i 7168 . . . . . . . . . 10 𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
176168oveq2i 7168 . . . . . . . . . . . 12 ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
177176a1i 11 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑚𝑠)) → ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
178177sumeq2i 15118 . . . . . . . . . 10 Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
179174, 175, 1783eqtr3g 2817 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
180164, 179eqtrd 2794 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
181154, 180breqtrrd 5065 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
182105adantr 484 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
183159adantr 484 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ)
184 0zd 12046 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 0 ∈ ℤ)
185 fz0ssnn0 13065 . . . . . . . . . . . . 13 (0...(𝑚𝑠)) ⊆ ℕ0
186185a1i 11 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...(𝑚𝑠)) ⊆ ℕ0)
187102adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
18876adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
189106adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
190104adantr 484 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → seq0( + , 𝐾) ∈ dom ⇝ )
19130, 184, 46, 186, 187, 188, 189, 190isumless 15262 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ≤ Σ𝑗 ∈ ℕ0 (abs‘𝐴))
192102sumeq2dv 15122 . . . . . . . . . . . 12 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) = Σ𝑗 ∈ ℕ0 (abs‘𝐴))
193192adantr 484 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾𝑗) = Σ𝑗 ∈ ℕ0 (abs‘𝐴))
194191, 193breqtrrd 5065 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ≤ Σ𝑗 ∈ ℕ0 (𝐾𝑗))
195105ltp1d 11622 . . . . . . . . . . 11 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
196195adantr 484 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾𝑗) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
19798, 182, 183, 194, 196lelttrd 10850 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
19893rpregt0d 12492 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2)))
199198adantr 484 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2)))
200 ltmul1 11542 . . . . . . . . . 10 ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ∈ ℝ ∧ (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
20198, 183, 199, 200syl3anc 1369 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
202197, 201mpbid 235 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2)))
203109rpregt0d 12492 . . . . . . . . . 10 (𝜑 → ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ 0 < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
204203adantr 484 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ 0 < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
205 ltdivmul 11567 . . . . . . . . 9 (((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) ∈ ℝ ∧ (𝐸 / 2) ∈ ℝ ∧ ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ 0 < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) → (((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) < (𝐸 / 2) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
20699, 95, 204, 205syl3anc 1369 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) < (𝐸 / 2) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
207202, 206mpbird 260 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) < (𝐸 / 2))
20881, 111, 95, 181, 207lelttrd 10850 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < (𝐸 / 2))
209 mertens.13 . . . . . . . . . . . 12 (𝜑 → (0 ≤ sup(𝑇, ℝ, < ) ∧ (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧)))
210209simprd 499 . . . . . . . . . . 11 (𝜑 → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧))
211 suprcl 11651 . . . . . . . . . . 11 ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧) → sup(𝑇, ℝ, < ) ∈ ℝ)
212210, 211syl 17 . . . . . . . . . 10 (𝜑 → sup(𝑇, ℝ, < ) ∈ ℝ)
21394, 212remulcld 10723 . . . . . . . . 9 (𝜑 → ((𝐸 / 2) · sup(𝑇, ℝ, < )) ∈ ℝ)
214209simpld 498 . . . . . . . . . 10 (𝜑 → 0 ≤ sup(𝑇, ℝ, < ))
215212, 214ge0p1rpd 12516 . . . . . . . . 9 (𝜑 → (sup(𝑇, ℝ, < ) + 1) ∈ ℝ+)
216213, 215rerpdivcld 12517 . . . . . . . 8 (𝜑 → (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) ∈ ℝ)
217216adantr 484 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) ∈ ℝ)
2185nnrpd 12484 . . . . . . . . . . . . . 14 (𝜑𝑠 ∈ ℝ+)
21993, 218rpdivcld 12503 . . . . . . . . . . . . 13 (𝜑 → ((𝐸 / 2) / 𝑠) ∈ ℝ+)
220219, 215rpdivcld 12503 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈ ℝ+)
221220rpred 12486 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈ ℝ)
222221, 212remulcld 10723 . . . . . . . . . 10 (𝜑 → ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) ∈ ℝ)
223222ad2antrr 725 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) ∈ ℝ)
224 simpll 766 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝜑)
22590, 12syl 17 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ ℕ0)
226224, 225, 76syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘𝐴) ∈ ℝ)
227221ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈ ℝ)
228224, 225, 102syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝐾𝑗) = (abs‘𝐴))
229 fveq2 6664 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → (𝐾𝑚) = (𝐾𝑗))
230229breq1d 5047 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → ((𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ (𝐾𝑗) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
2317simprd 499 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))
232231ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))
233 elfzuz 12966 . . . . . . . . . . . . . 14 (𝑗 ∈ (((𝑚𝑠) + 1)...𝑚) → 𝑗 ∈ (ℤ‘((𝑚𝑠) + 1)))
234 eluzle 12309 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ‘(𝑠 + 𝑡)) → (𝑠 + 𝑡) ≤ 𝑚)
235234adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑠 + 𝑡) ≤ 𝑚)
2368nn0zd 12138 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑡 ∈ ℤ)
237236adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑡 ∈ ℤ)
238237zred 12140 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑡 ∈ ℝ)
23952, 238, 51leaddsub2d 11294 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑠 + 𝑡) ≤ 𝑚𝑡 ≤ (𝑚𝑠)))
240235, 239mpbid 235 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑡 ≤ (𝑚𝑠))
241 eluz 12310 . . . . . . . . . . . . . . . . 17 ((𝑡 ∈ ℤ ∧ (𝑚𝑠) ∈ ℤ) → ((𝑚𝑠) ∈ (ℤ𝑡) ↔ 𝑡 ≤ (𝑚𝑠)))
242237, 69, 241syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) ∈ (ℤ𝑡) ↔ 𝑡 ≤ (𝑚𝑠)))
243240, 242mpbird 260 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ (ℤ𝑡))
244 peano2uz 12355 . . . . . . . . . . . . . . 15 ((𝑚𝑠) ∈ (ℤ𝑡) → ((𝑚𝑠) + 1) ∈ (ℤ𝑡))
245243, 244syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ (ℤ𝑡))
246 uztrn 12314 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℤ‘((𝑚𝑠) + 1)) ∧ ((𝑚𝑠) + 1) ∈ (ℤ𝑡)) → 𝑗 ∈ (ℤ𝑡))
247233, 245, 246syl2anr 599 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ (ℤ𝑡))
248230, 232, 247rspcdva 3546 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝐾𝑗) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))
249228, 248eqbrtrrd 5061 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘𝐴) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))
250226, 227, 249ltled 10840 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))
251210ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧))
25251adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑚 ∈ ℝ)
253 peano2zm 12078 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℤ → (𝑠 − 1) ∈ ℤ)
25456, 253syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑠 − 1) ∈ ℤ)
255254zred 12140 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑠 − 1) ∈ ℝ)
256255ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑠 − 1) ∈ ℝ)
257225nn0red 12009 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ ℝ)
25850zcnd 12141 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ ℂ)
25952recnd 10721 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℂ)
260 1cnd 10688 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 1 ∈ ℂ)
261258, 259, 260subsubd 11077 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚 − (𝑠 − 1)) = ((𝑚𝑠) + 1))
262261adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚 − (𝑠 − 1)) = ((𝑚𝑠) + 1))
263 elfzle1 12973 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (((𝑚𝑠) + 1)...𝑚) → ((𝑚𝑠) + 1) ≤ 𝑗)
264263adantl 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((𝑚𝑠) + 1) ≤ 𝑗)
265262, 264eqbrtrd 5059 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚 − (𝑠 − 1)) ≤ 𝑗)
266252, 256, 257, 265subled 11295 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ≤ (𝑠 − 1))
26790, 16syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ∈ ℕ0)
268267, 30eleqtrdi 2863 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ∈ (ℤ‘0))
269254ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑠 − 1) ∈ ℤ)
270 elfz5 12962 . . . . . . . . . . . . . . 15 (((𝑚𝑗) ∈ (ℤ‘0) ∧ (𝑠 − 1) ∈ ℤ) → ((𝑚𝑗) ∈ (0...(𝑠 − 1)) ↔ (𝑚𝑗) ≤ (𝑠 − 1)))
271268, 269, 270syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((𝑚𝑗) ∈ (0...(𝑠 − 1)) ↔ (𝑚𝑗) ≤ (𝑠 − 1)))
272266, 271mpbird 260 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ∈ (0...(𝑠 − 1)))
273 simplll 774 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝜑)
27490, 19syldan 594 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((𝑚𝑗) + 1) ∈ ℕ0)
275274, 22sylan 583 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
276273, 275, 24syl2anc 587 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → (𝐺𝑘) = 𝐵)
277276sumeq2dv 15122 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)
278277eqcomd 2765 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘))
279278fveq2d 6668 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)))
280131rspceeqv 3559 . . . . . . . . . . . . 13 (((𝑚𝑗) ∈ (0...(𝑠 − 1)) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘))) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
281272, 279, 280syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
282 fvex 6677 . . . . . . . . . . . . 13 (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ V
283 eqeq1 2763 . . . . . . . . . . . . . 14 (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
284283rexbidv 3222 . . . . . . . . . . . . 13 (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) → (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
285 mertens.10 . . . . . . . . . . . . 13 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
286282, 284, 285elab2 3594 . . . . . . . . . . . 12 ((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
287281, 286sylibr 237 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ 𝑇)
288 suprub 11652 . . . . . . . . . . 11 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ 𝑇) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ sup(𝑇, ℝ, < ))
289251, 287, 288syl2anc 587 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ sup(𝑇, ℝ, < ))
290224, 225, 125syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
29190, 78syldan 594 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
29236absge0d 14866 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
29390, 292syldan 594 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
294291, 293jca 515 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ ∧ 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
295212ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → sup(𝑇, ℝ, < ) ∈ ℝ)
296 lemul12a 11550 . . . . . . . . . . 11 (((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈ ℝ) ∧ (((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ ∧ 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∧ sup(𝑇, ℝ, < ) ∈ ℝ)) → (((abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ sup(𝑇, ℝ, < )) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))))
297290, 227, 294, 295, 296syl22anc 837 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (((abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ sup(𝑇, ℝ, < )) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))))
298250, 289, 297mp2and 698 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )))
29982, 91, 223, 298fsumle 15216 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )))
300222recnd 10721 . . . . . . . . . . 11 (𝜑 → ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) ∈ ℂ)
301300adantr 484 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) ∈ ℂ)
302 fsumconst 15207 . . . . . . . . . 10 (((((𝑚𝑠) + 1)...𝑚) ∈ Fin ∧ ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) ∈ ℂ) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) = ((♯‘(((𝑚𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))))
30382, 301, 302syl2anc 587 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) = ((♯‘(((𝑚𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))))
304 1zzd 12066 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 1 ∈ ℤ)
30556adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℤ)
306 fzen 12987 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ (𝑚𝑠) ∈ ℤ) → (1...𝑠) ≈ ((1 + (𝑚𝑠))...(𝑠 + (𝑚𝑠))))
307304, 305, 69, 306syl3anc 1369 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1...𝑠) ≈ ((1 + (𝑚𝑠))...(𝑠 + (𝑚𝑠))))
308 ax-1cn 10647 . . . . . . . . . . . . . . 15 1 ∈ ℂ
30969zcnd 12141 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℂ)
310 addcom 10878 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝑚𝑠) ∈ ℂ) → (1 + (𝑚𝑠)) = ((𝑚𝑠) + 1))
311308, 309, 310sylancr 590 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1 + (𝑚𝑠)) = ((𝑚𝑠) + 1))
312259, 258pncan3d 11052 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑠 + (𝑚𝑠)) = 𝑚)
313311, 312oveq12d 7175 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((1 + (𝑚𝑠))...(𝑠 + (𝑚𝑠))) = (((𝑚𝑠) + 1)...𝑚))
314307, 313breqtrd 5063 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1...𝑠) ≈ (((𝑚𝑠) + 1)...𝑚))
315 fzfid 13404 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1...𝑠) ∈ Fin)
316 hashen 13771 . . . . . . . . . . . . 13 (((1...𝑠) ∈ Fin ∧ (((𝑚𝑠) + 1)...𝑚) ∈ Fin) → ((♯‘(1...𝑠)) = (♯‘(((𝑚𝑠) + 1)...𝑚)) ↔ (1...𝑠) ≈ (((𝑚𝑠) + 1)...𝑚)))
317315, 82, 316syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((♯‘(1...𝑠)) = (♯‘(((𝑚𝑠) + 1)...𝑚)) ↔ (1...𝑠) ≈ (((𝑚𝑠) + 1)...𝑚)))
318314, 317mpbird 260 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (♯‘(1...𝑠)) = (♯‘(((𝑚𝑠) + 1)...𝑚)))
319 hashfz1 13770 . . . . . . . . . . . 12 (𝑠 ∈ ℕ0 → (♯‘(1...𝑠)) = 𝑠)
32047, 319syl 17 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (♯‘(1...𝑠)) = 𝑠)
321318, 320eqtr3d 2796 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (♯‘(((𝑚𝑠) + 1)...𝑚)) = 𝑠)
322321oveq1d 7172 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((♯‘(((𝑚𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))) = (𝑠 · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))))
323212recnd 10721 . . . . . . . . . . . 12 (𝜑 → sup(𝑇, ℝ, < ) ∈ ℂ)
324215rpcnne0d 12495 . . . . . . . . . . . 12 (𝜑 → ((sup(𝑇, ℝ, < ) + 1) ∈ ℂ ∧ (sup(𝑇, ℝ, < ) + 1) ≠ 0))
325 div23 11369 . . . . . . . . . . . 12 (((𝐸 / 2) ∈ ℂ ∧ sup(𝑇, ℝ, < ) ∈ ℂ ∧ ((sup(𝑇, ℝ, < ) + 1) ∈ ℂ ∧ (sup(𝑇, ℝ, < ) + 1) ≠ 0)) → (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) = (((𝐸 / 2) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )))
326156, 323, 324, 325syl3anc 1369 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) = (((𝐸 / 2) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )))
32756zcnd 12141 . . . . . . . . . . . . . 14 (𝜑𝑠 ∈ ℂ)
328219rpcnd 12488 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸 / 2) / 𝑠) ∈ ℂ)
329 divass 11368 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℂ ∧ ((𝐸 / 2) / 𝑠) ∈ ℂ ∧ ((sup(𝑇, ℝ, < ) + 1) ∈ ℂ ∧ (sup(𝑇, ℝ, < ) + 1) ≠ 0)) → ((𝑠 · ((𝐸 / 2) / 𝑠)) / (sup(𝑇, ℝ, < ) + 1)) = (𝑠 · (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
330327, 328, 324, 329syl3anc 1369 . . . . . . . . . . . . 13 (𝜑 → ((𝑠 · ((𝐸 / 2) / 𝑠)) / (sup(𝑇, ℝ, < ) + 1)) = (𝑠 · (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
3315nnne0d 11738 . . . . . . . . . . . . . . 15 (𝜑𝑠 ≠ 0)
332156, 327, 331divcan2d 11470 . . . . . . . . . . . . . 14 (𝜑 → (𝑠 · ((𝐸 / 2) / 𝑠)) = (𝐸 / 2))
333332oveq1d 7172 . . . . . . . . . . . . 13 (𝜑 → ((𝑠 · ((𝐸 / 2) / 𝑠)) / (sup(𝑇, ℝ, < ) + 1)) = ((𝐸 / 2) / (sup(𝑇, ℝ, < ) + 1)))
334330, 333eqtr3d 2796 . . . . . . . . . . . 12 (𝜑 → (𝑠 · (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) = ((𝐸 / 2) / (sup(𝑇, ℝ, < ) + 1)))
335334oveq1d 7172 . . . . . . . . . . 11 (𝜑 → ((𝑠 · (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) · sup(𝑇, ℝ, < )) = (((𝐸 / 2) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )))
336220rpcnd 12488 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈ ℂ)
337327, 336, 323mulassd 10716 . . . . . . . . . . 11 (𝜑 → ((𝑠 · (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) · sup(𝑇, ℝ, < )) = (𝑠 · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))))
338326, 335, 3373eqtr2rd 2801 . . . . . . . . . 10 (𝜑 → (𝑠 · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))) = (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)))
339338adantr 484 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑠 · ((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < ))) = (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)))
340303, 322, 3393eqtrd 2798 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) · sup(𝑇, ℝ, < )) = (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)))
341299, 340breqtrd 5063 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)))
342 peano2re 10865 . . . . . . . . . . 11 (sup(𝑇, ℝ, < ) ∈ ℝ → (sup(𝑇, ℝ, < ) + 1) ∈ ℝ)
343212, 342syl 17 . . . . . . . . . 10 (𝜑 → (sup(𝑇, ℝ, < ) + 1) ∈ ℝ)
344212ltp1d 11622 . . . . . . . . . 10 (𝜑 → sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1))
345212, 343, 93, 344ltmul2dd 12542 . . . . . . . . 9 (𝜑 → ((𝐸 / 2) · sup(𝑇, ℝ, < )) < ((𝐸 / 2) · (sup(𝑇, ℝ, < ) + 1)))
346213, 94, 215ltdivmul2d 12538 . . . . . . . . 9 (𝜑 → ((((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) < (𝐸 / 2) ↔ ((𝐸 / 2) · sup(𝑇, ℝ, < )) < ((𝐸 / 2) · (sup(𝑇, ℝ, < ) + 1))))
347345, 346mpbird 260 . . . . . . . 8 (𝜑 → (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) < (𝐸 / 2))
348347adantr 484 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝐸 / 2) · sup(𝑇, ℝ, < )) / (sup(𝑇, ℝ, < ) + 1)) < (𝐸 / 2))
34992, 217, 95, 341, 348lelttrd 10850 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < (𝐸 / 2))
35081, 92, 95, 95, 208, 349lt2addd 11315 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))) < ((𝐸 / 2) + (𝐸 / 2)))
35114, 36absmuld 14876 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) = ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
352351sumeq2dv 15122 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) = Σ𝑗 ∈ (0...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
35369zred 12140 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℝ)
354353ltp1d 11622 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) < ((𝑚𝑠) + 1))
355 fzdisj 12997 . . . . . . . 8 ((𝑚𝑠) < ((𝑚𝑠) + 1) → ((0...(𝑚𝑠)) ∩ (((𝑚𝑠) + 1)...𝑚)) = ∅)
356354, 355syl 17 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((0...(𝑚𝑠)) ∩ (((𝑚𝑠) + 1)...𝑚)) = ∅)
357 fzsplit 12996 . . . . . . . 8 ((𝑚𝑠) ∈ (0...𝑚) → (0...𝑚) = ((0...(𝑚𝑠)) ∪ (((𝑚𝑠) + 1)...𝑚)))
35867, 357syl 17 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...𝑚) = ((0...(𝑚𝑠)) ∪ (((𝑚𝑠) + 1)...𝑚)))
35979recnd 10721 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℂ)
360356, 358, 10, 359fsumsplit 15159 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) = (Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))))
361352, 360eqtr2d 2795 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))) = Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
36242rpcnd 12488 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
363362adantr 484 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝐸 ∈ ℂ)
3643632halvesd 11934 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
365350, 361, 3643brtr3d 5068 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
36639, 41, 44, 45, 365lelttrd 10850 . . 3 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
367366ralrimiva 3114 . 2 (𝜑 → ∀𝑚 ∈ (ℤ‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
368 fveq2 6664 . . . 4 (𝑦 = (𝑠 + 𝑡) → (ℤ𝑦) = (ℤ‘(𝑠 + 𝑡)))
369368raleqdv 3330 . . 3 (𝑦 = (𝑠 + 𝑡) → (∀𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸 ↔ ∀𝑚 ∈ (ℤ‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
370369rspcev 3544 . 2 (((𝑠 + 𝑡) ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
3719, 367, 370syl2anc 587 1 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1085   = wceq 1539  wcel 2112  {cab 2736  wne 2952  wral 3071  wrex 3072  cun 3859  cin 3860  wss 3861  c0 4228   class class class wbr 5037  dom cdm 5529  cfv 6341  (class class class)co 7157  cen 8538  Fincfn 8541  supcsup 8951  cc 10587  cr 10588  0cc0 10589  1c1 10590   + caddc 10592   · cmul 10594   < clt 10727  cle 10728  cmin 10922   / cdiv 11349  cn 11688  2c2 11743  0cn0 11948  cz 12034  cuz 12296  +crp 12444  ...cfz 12953  seqcseq 13432  chash 13754  abscabs 14655  cli 14903  Σcsu 15104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-inf2 9151  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-pre-sup 10667
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-er 8306  df-pm 8426  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-sup 8953  df-inf 8954  df-oi 9021  df-card 9415  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-div 11350  df-nn 11689  df-2 11751  df-3 11752  df-n0 11949  df-z 12035  df-uz 12297  df-rp 12445  df-ico 12799  df-fz 12954  df-fzo 13097  df-fl 13225  df-seq 13433  df-exp 13494  df-hash 13755  df-cj 14520  df-re 14521  df-im 14522  df-sqrt 14656  df-abs 14657  df-clim 14907  df-rlim 14908  df-sum 15105
This theorem is referenced by:  mertenslem2  15303
  Copyright terms: Public domain W3C validator