Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infcvgaux2i | Structured version Visualization version GIF version |
Description: Auxiliary theorem for applications of supcvg 15568. (Contributed by NM, 4-Mar-2008.) |
Ref | Expression |
---|---|
infcvg.1 | ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} |
infcvg.2 | ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) |
infcvg.3 | ⊢ 𝑍 ∈ 𝑋 |
infcvg.4 | ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 |
infcvg.5a | ⊢ 𝑆 = -sup(𝑅, ℝ, < ) |
infcvg.13 | ⊢ (𝑦 = 𝐶 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
infcvgaux2i | ⊢ (𝐶 ∈ 𝑋 → 𝑆 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infcvg.5a | . 2 ⊢ 𝑆 = -sup(𝑅, ℝ, < ) | |
2 | eqid 2738 | . . . . . 6 ⊢ -𝐵 = -𝐵 | |
3 | infcvg.13 | . . . . . . . 8 ⊢ (𝑦 = 𝐶 → 𝐴 = 𝐵) | |
4 | 3 | negeqd 11215 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → -𝐴 = -𝐵) |
5 | 4 | rspceeqv 3575 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑋 ∧ -𝐵 = -𝐵) → ∃𝑦 ∈ 𝑋 -𝐵 = -𝐴) |
6 | 2, 5 | mpan2 688 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → ∃𝑦 ∈ 𝑋 -𝐵 = -𝐴) |
7 | negex 11219 | . . . . . 6 ⊢ -𝐵 ∈ V | |
8 | eqeq1 2742 | . . . . . . 7 ⊢ (𝑥 = -𝐵 → (𝑥 = -𝐴 ↔ -𝐵 = -𝐴)) | |
9 | 8 | rexbidv 3226 | . . . . . 6 ⊢ (𝑥 = -𝐵 → (∃𝑦 ∈ 𝑋 𝑥 = -𝐴 ↔ ∃𝑦 ∈ 𝑋 -𝐵 = -𝐴)) |
10 | infcvg.1 | . . . . . 6 ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} | |
11 | 7, 9, 10 | elab2 3613 | . . . . 5 ⊢ (-𝐵 ∈ 𝑅 ↔ ∃𝑦 ∈ 𝑋 -𝐵 = -𝐴) |
12 | 6, 11 | sylibr 233 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → -𝐵 ∈ 𝑅) |
13 | infcvg.2 | . . . . . 6 ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) | |
14 | infcvg.3 | . . . . . 6 ⊢ 𝑍 ∈ 𝑋 | |
15 | infcvg.4 | . . . . . 6 ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 | |
16 | 10, 13, 14, 15 | infcvgaux1i 15569 | . . . . 5 ⊢ (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧) |
17 | 16 | suprubii 11950 | . . . 4 ⊢ (-𝐵 ∈ 𝑅 → -𝐵 ≤ sup(𝑅, ℝ, < )) |
18 | 12, 17 | syl 17 | . . 3 ⊢ (𝐶 ∈ 𝑋 → -𝐵 ≤ sup(𝑅, ℝ, < )) |
19 | 3 | eleq1d 2823 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ)) |
20 | 19, 13 | vtoclga 3513 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → 𝐵 ∈ ℝ) |
21 | 16 | suprclii 11949 | . . . 4 ⊢ sup(𝑅, ℝ, < ) ∈ ℝ |
22 | lenegcon1 11479 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ sup(𝑅, ℝ, < ) ∈ ℝ) → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵)) | |
23 | 20, 21, 22 | sylancl 586 | . . 3 ⊢ (𝐶 ∈ 𝑋 → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵)) |
24 | 18, 23 | mpbid 231 | . 2 ⊢ (𝐶 ∈ 𝑋 → -sup(𝑅, ℝ, < ) ≤ 𝐵) |
25 | 1, 24 | eqbrtrid 5109 | 1 ⊢ (𝐶 ∈ 𝑋 → 𝑆 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 class class class wbr 5074 supcsup 9199 ℝcr 10870 < clt 11009 ≤ cle 11010 -cneg 11206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |