| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infcvgaux2i | Structured version Visualization version GIF version | ||
| Description: Auxiliary theorem for applications of supcvg 15822. (Contributed by NM, 4-Mar-2008.) |
| Ref | Expression |
|---|---|
| infcvg.1 | ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} |
| infcvg.2 | ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) |
| infcvg.3 | ⊢ 𝑍 ∈ 𝑋 |
| infcvg.4 | ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 |
| infcvg.5a | ⊢ 𝑆 = -sup(𝑅, ℝ, < ) |
| infcvg.13 | ⊢ (𝑦 = 𝐶 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| infcvgaux2i | ⊢ (𝐶 ∈ 𝑋 → 𝑆 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infcvg.5a | . 2 ⊢ 𝑆 = -sup(𝑅, ℝ, < ) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ -𝐵 = -𝐵 | |
| 3 | infcvg.13 | . . . . . . . 8 ⊢ (𝑦 = 𝐶 → 𝐴 = 𝐵) | |
| 4 | 3 | negeqd 11415 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → -𝐴 = -𝐵) |
| 5 | 4 | rspceeqv 3611 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑋 ∧ -𝐵 = -𝐵) → ∃𝑦 ∈ 𝑋 -𝐵 = -𝐴) |
| 6 | 2, 5 | mpan2 691 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → ∃𝑦 ∈ 𝑋 -𝐵 = -𝐴) |
| 7 | negex 11419 | . . . . . 6 ⊢ -𝐵 ∈ V | |
| 8 | eqeq1 2733 | . . . . . . 7 ⊢ (𝑥 = -𝐵 → (𝑥 = -𝐴 ↔ -𝐵 = -𝐴)) | |
| 9 | 8 | rexbidv 3157 | . . . . . 6 ⊢ (𝑥 = -𝐵 → (∃𝑦 ∈ 𝑋 𝑥 = -𝐴 ↔ ∃𝑦 ∈ 𝑋 -𝐵 = -𝐴)) |
| 10 | infcvg.1 | . . . . . 6 ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} | |
| 11 | 7, 9, 10 | elab2 3649 | . . . . 5 ⊢ (-𝐵 ∈ 𝑅 ↔ ∃𝑦 ∈ 𝑋 -𝐵 = -𝐴) |
| 12 | 6, 11 | sylibr 234 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → -𝐵 ∈ 𝑅) |
| 13 | infcvg.2 | . . . . . 6 ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) | |
| 14 | infcvg.3 | . . . . . 6 ⊢ 𝑍 ∈ 𝑋 | |
| 15 | infcvg.4 | . . . . . 6 ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 | |
| 16 | 10, 13, 14, 15 | infcvgaux1i 15823 | . . . . 5 ⊢ (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧) |
| 17 | 16 | suprubii 12158 | . . . 4 ⊢ (-𝐵 ∈ 𝑅 → -𝐵 ≤ sup(𝑅, ℝ, < )) |
| 18 | 12, 17 | syl 17 | . . 3 ⊢ (𝐶 ∈ 𝑋 → -𝐵 ≤ sup(𝑅, ℝ, < )) |
| 19 | 3 | eleq1d 2813 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ)) |
| 20 | 19, 13 | vtoclga 3543 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → 𝐵 ∈ ℝ) |
| 21 | 16 | suprclii 12157 | . . . 4 ⊢ sup(𝑅, ℝ, < ) ∈ ℝ |
| 22 | lenegcon1 11682 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ sup(𝑅, ℝ, < ) ∈ ℝ) → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵)) | |
| 23 | 20, 21, 22 | sylancl 586 | . . 3 ⊢ (𝐶 ∈ 𝑋 → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵)) |
| 24 | 18, 23 | mpbid 232 | . 2 ⊢ (𝐶 ∈ 𝑋 → -sup(𝑅, ℝ, < ) ≤ 𝐵) |
| 25 | 1, 24 | eqbrtrid 5142 | 1 ⊢ (𝐶 ∈ 𝑋 → 𝑆 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 class class class wbr 5107 supcsup 9391 ℝcr 11067 < clt 11208 ≤ cle 11209 -cneg 11406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |