MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcvgaux2i Structured version   Visualization version   GIF version

Theorem infcvgaux2i 15765
Description: Auxiliary theorem for applications of supcvg 15763. (Contributed by NM, 4-Mar-2008.)
Hypotheses
Ref Expression
infcvg.1 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
infcvg.2 (𝑦𝑋𝐴 ∈ ℝ)
infcvg.3 𝑍𝑋
infcvg.4 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
infcvg.5a 𝑆 = -sup(𝑅, ℝ, < )
infcvg.13 (𝑦 = 𝐶𝐴 = 𝐵)
Assertion
Ref Expression
infcvgaux2i (𝐶𝑋𝑆𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑧,𝑤,𝑅   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦   𝑦,𝐶
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤)   𝐵(𝑧,𝑤)   𝐶(𝑥,𝑧,𝑤)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑧,𝑤)   𝑍(𝑧,𝑤)

Proof of Theorem infcvgaux2i
StepHypRef Expression
1 infcvg.5a . 2 𝑆 = -sup(𝑅, ℝ, < )
2 eqid 2731 . . . . . 6 -𝐵 = -𝐵
3 infcvg.13 . . . . . . . 8 (𝑦 = 𝐶𝐴 = 𝐵)
43negeqd 11354 . . . . . . 7 (𝑦 = 𝐶 → -𝐴 = -𝐵)
54rspceeqv 3595 . . . . . 6 ((𝐶𝑋 ∧ -𝐵 = -𝐵) → ∃𝑦𝑋 -𝐵 = -𝐴)
62, 5mpan2 691 . . . . 5 (𝐶𝑋 → ∃𝑦𝑋 -𝐵 = -𝐴)
7 negex 11358 . . . . . 6 -𝐵 ∈ V
8 eqeq1 2735 . . . . . . 7 (𝑥 = -𝐵 → (𝑥 = -𝐴 ↔ -𝐵 = -𝐴))
98rexbidv 3156 . . . . . 6 (𝑥 = -𝐵 → (∃𝑦𝑋 𝑥 = -𝐴 ↔ ∃𝑦𝑋 -𝐵 = -𝐴))
10 infcvg.1 . . . . . 6 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
117, 9, 10elab2 3633 . . . . 5 (-𝐵𝑅 ↔ ∃𝑦𝑋 -𝐵 = -𝐴)
126, 11sylibr 234 . . . 4 (𝐶𝑋 → -𝐵𝑅)
13 infcvg.2 . . . . . 6 (𝑦𝑋𝐴 ∈ ℝ)
14 infcvg.3 . . . . . 6 𝑍𝑋
15 infcvg.4 . . . . . 6 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
1610, 13, 14, 15infcvgaux1i 15764 . . . . 5 (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧)
1716suprubii 12097 . . . 4 (-𝐵𝑅 → -𝐵 ≤ sup(𝑅, ℝ, < ))
1812, 17syl 17 . . 3 (𝐶𝑋 → -𝐵 ≤ sup(𝑅, ℝ, < ))
193eleq1d 2816 . . . . 5 (𝑦 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ))
2019, 13vtoclga 3528 . . . 4 (𝐶𝑋𝐵 ∈ ℝ)
2116suprclii 12096 . . . 4 sup(𝑅, ℝ, < ) ∈ ℝ
22 lenegcon1 11621 . . . 4 ((𝐵 ∈ ℝ ∧ sup(𝑅, ℝ, < ) ∈ ℝ) → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵))
2320, 21, 22sylancl 586 . . 3 (𝐶𝑋 → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵))
2418, 23mpbid 232 . 2 (𝐶𝑋 → -sup(𝑅, ℝ, < ) ≤ 𝐵)
251, 24eqbrtrid 5124 1 (𝐶𝑋𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056   class class class wbr 5089  supcsup 9324  cr 11005   < clt 11146  cle 11147  -cneg 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator