MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcvgaux2i Structured version   Visualization version   GIF version

Theorem infcvgaux2i 15208
Description: Auxiliary theorem for applications of supcvg 15206. (Contributed by NM, 4-Mar-2008.)
Hypotheses
Ref Expression
infcvg.1 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
infcvg.2 (𝑦𝑋𝐴 ∈ ℝ)
infcvg.3 𝑍𝑋
infcvg.4 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
infcvg.5a 𝑆 = -sup(𝑅, ℝ, < )
infcvg.13 (𝑦 = 𝐶𝐴 = 𝐵)
Assertion
Ref Expression
infcvgaux2i (𝐶𝑋𝑆𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑧,𝑤,𝑅   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦   𝑦,𝐶
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤)   𝐵(𝑧,𝑤)   𝐶(𝑥,𝑧,𝑤)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑧,𝑤)   𝑍(𝑧,𝑤)

Proof of Theorem infcvgaux2i
StepHypRef Expression
1 infcvg.5a . 2 𝑆 = -sup(𝑅, ℝ, < )
2 eqid 2820 . . . . . 6 -𝐵 = -𝐵
3 infcvg.13 . . . . . . . 8 (𝑦 = 𝐶𝐴 = 𝐵)
43negeqd 10873 . . . . . . 7 (𝑦 = 𝐶 → -𝐴 = -𝐵)
54rspceeqv 3635 . . . . . 6 ((𝐶𝑋 ∧ -𝐵 = -𝐵) → ∃𝑦𝑋 -𝐵 = -𝐴)
62, 5mpan2 689 . . . . 5 (𝐶𝑋 → ∃𝑦𝑋 -𝐵 = -𝐴)
7 negex 10877 . . . . . 6 -𝐵 ∈ V
8 eqeq1 2824 . . . . . . 7 (𝑥 = -𝐵 → (𝑥 = -𝐴 ↔ -𝐵 = -𝐴))
98rexbidv 3296 . . . . . 6 (𝑥 = -𝐵 → (∃𝑦𝑋 𝑥 = -𝐴 ↔ ∃𝑦𝑋 -𝐵 = -𝐴))
10 infcvg.1 . . . . . 6 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
117, 9, 10elab2 3666 . . . . 5 (-𝐵𝑅 ↔ ∃𝑦𝑋 -𝐵 = -𝐴)
126, 11sylibr 236 . . . 4 (𝐶𝑋 → -𝐵𝑅)
13 infcvg.2 . . . . . 6 (𝑦𝑋𝐴 ∈ ℝ)
14 infcvg.3 . . . . . 6 𝑍𝑋
15 infcvg.4 . . . . . 6 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
1610, 13, 14, 15infcvgaux1i 15207 . . . . 5 (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧)
1716suprubii 11609 . . . 4 (-𝐵𝑅 → -𝐵 ≤ sup(𝑅, ℝ, < ))
1812, 17syl 17 . . 3 (𝐶𝑋 → -𝐵 ≤ sup(𝑅, ℝ, < ))
193eleq1d 2896 . . . . 5 (𝑦 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ))
2019, 13vtoclga 3571 . . . 4 (𝐶𝑋𝐵 ∈ ℝ)
2116suprclii 11608 . . . 4 sup(𝑅, ℝ, < ) ∈ ℝ
22 lenegcon1 11137 . . . 4 ((𝐵 ∈ ℝ ∧ sup(𝑅, ℝ, < ) ∈ ℝ) → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵))
2320, 21, 22sylancl 588 . . 3 (𝐶𝑋 → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵))
2418, 23mpbid 234 . 2 (𝐶𝑋 → -sup(𝑅, ℝ, < ) ≤ 𝐵)
251, 24eqbrtrid 5094 1 (𝐶𝑋𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1536  wcel 2113  {cab 2798  wral 3137  wrex 3138   class class class wbr 5059  supcsup 8897  cr 10529   < clt 10668  cle 10669  -cneg 10864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-sup 8899  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator