![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infcvgaux2i | Structured version Visualization version GIF version |
Description: Auxiliary theorem for applications of supcvg 14992. (Contributed by NM, 4-Mar-2008.) |
Ref | Expression |
---|---|
infcvg.1 | ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} |
infcvg.2 | ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) |
infcvg.3 | ⊢ 𝑍 ∈ 𝑋 |
infcvg.4 | ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 |
infcvg.5a | ⊢ 𝑆 = -sup(𝑅, ℝ, < ) |
infcvg.13 | ⊢ (𝑦 = 𝐶 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
infcvgaux2i | ⊢ (𝐶 ∈ 𝑋 → 𝑆 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infcvg.5a | . 2 ⊢ 𝑆 = -sup(𝑅, ℝ, < ) | |
2 | eqid 2777 | . . . . . 6 ⊢ -𝐵 = -𝐵 | |
3 | infcvg.13 | . . . . . . . 8 ⊢ (𝑦 = 𝐶 → 𝐴 = 𝐵) | |
4 | 3 | negeqd 10616 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → -𝐴 = -𝐵) |
5 | 4 | rspceeqv 3528 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑋 ∧ -𝐵 = -𝐵) → ∃𝑦 ∈ 𝑋 -𝐵 = -𝐴) |
6 | 2, 5 | mpan2 681 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → ∃𝑦 ∈ 𝑋 -𝐵 = -𝐴) |
7 | negex 10620 | . . . . . 6 ⊢ -𝐵 ∈ V | |
8 | eqeq1 2781 | . . . . . . 7 ⊢ (𝑥 = -𝐵 → (𝑥 = -𝐴 ↔ -𝐵 = -𝐴)) | |
9 | 8 | rexbidv 3236 | . . . . . 6 ⊢ (𝑥 = -𝐵 → (∃𝑦 ∈ 𝑋 𝑥 = -𝐴 ↔ ∃𝑦 ∈ 𝑋 -𝐵 = -𝐴)) |
10 | infcvg.1 | . . . . . 6 ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} | |
11 | 7, 9, 10 | elab2 3561 | . . . . 5 ⊢ (-𝐵 ∈ 𝑅 ↔ ∃𝑦 ∈ 𝑋 -𝐵 = -𝐴) |
12 | 6, 11 | sylibr 226 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → -𝐵 ∈ 𝑅) |
13 | infcvg.2 | . . . . . 6 ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) | |
14 | infcvg.3 | . . . . . 6 ⊢ 𝑍 ∈ 𝑋 | |
15 | infcvg.4 | . . . . . 6 ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 | |
16 | 10, 13, 14, 15 | infcvgaux1i 14993 | . . . . 5 ⊢ (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧) |
17 | 16 | suprubii 11352 | . . . 4 ⊢ (-𝐵 ∈ 𝑅 → -𝐵 ≤ sup(𝑅, ℝ, < )) |
18 | 12, 17 | syl 17 | . . 3 ⊢ (𝐶 ∈ 𝑋 → -𝐵 ≤ sup(𝑅, ℝ, < )) |
19 | 3 | eleq1d 2843 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ)) |
20 | 19, 13 | vtoclga 3473 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → 𝐵 ∈ ℝ) |
21 | 16 | suprclii 11351 | . . . 4 ⊢ sup(𝑅, ℝ, < ) ∈ ℝ |
22 | lenegcon1 10879 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ sup(𝑅, ℝ, < ) ∈ ℝ) → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵)) | |
23 | 20, 21, 22 | sylancl 580 | . . 3 ⊢ (𝐶 ∈ 𝑋 → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵)) |
24 | 18, 23 | mpbid 224 | . 2 ⊢ (𝐶 ∈ 𝑋 → -sup(𝑅, ℝ, < ) ≤ 𝐵) |
25 | 1, 24 | syl5eqbr 4921 | 1 ⊢ (𝐶 ∈ 𝑋 → 𝑆 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1601 ∈ wcel 2106 {cab 2762 ∀wral 3089 ∃wrex 3090 class class class wbr 4886 supcsup 8634 ℝcr 10271 < clt 10411 ≤ cle 10412 -cneg 10607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-sup 8636 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |