![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infcvgaux2i | Structured version Visualization version GIF version |
Description: Auxiliary theorem for applications of supcvg 15904. (Contributed by NM, 4-Mar-2008.) |
Ref | Expression |
---|---|
infcvg.1 | ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} |
infcvg.2 | ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) |
infcvg.3 | ⊢ 𝑍 ∈ 𝑋 |
infcvg.4 | ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 |
infcvg.5a | ⊢ 𝑆 = -sup(𝑅, ℝ, < ) |
infcvg.13 | ⊢ (𝑦 = 𝐶 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
infcvgaux2i | ⊢ (𝐶 ∈ 𝑋 → 𝑆 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infcvg.5a | . 2 ⊢ 𝑆 = -sup(𝑅, ℝ, < ) | |
2 | eqid 2740 | . . . . . 6 ⊢ -𝐵 = -𝐵 | |
3 | infcvg.13 | . . . . . . . 8 ⊢ (𝑦 = 𝐶 → 𝐴 = 𝐵) | |
4 | 3 | negeqd 11530 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → -𝐴 = -𝐵) |
5 | 4 | rspceeqv 3658 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑋 ∧ -𝐵 = -𝐵) → ∃𝑦 ∈ 𝑋 -𝐵 = -𝐴) |
6 | 2, 5 | mpan2 690 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → ∃𝑦 ∈ 𝑋 -𝐵 = -𝐴) |
7 | negex 11534 | . . . . . 6 ⊢ -𝐵 ∈ V | |
8 | eqeq1 2744 | . . . . . . 7 ⊢ (𝑥 = -𝐵 → (𝑥 = -𝐴 ↔ -𝐵 = -𝐴)) | |
9 | 8 | rexbidv 3185 | . . . . . 6 ⊢ (𝑥 = -𝐵 → (∃𝑦 ∈ 𝑋 𝑥 = -𝐴 ↔ ∃𝑦 ∈ 𝑋 -𝐵 = -𝐴)) |
10 | infcvg.1 | . . . . . 6 ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} | |
11 | 7, 9, 10 | elab2 3698 | . . . . 5 ⊢ (-𝐵 ∈ 𝑅 ↔ ∃𝑦 ∈ 𝑋 -𝐵 = -𝐴) |
12 | 6, 11 | sylibr 234 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → -𝐵 ∈ 𝑅) |
13 | infcvg.2 | . . . . . 6 ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) | |
14 | infcvg.3 | . . . . . 6 ⊢ 𝑍 ∈ 𝑋 | |
15 | infcvg.4 | . . . . . 6 ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 | |
16 | 10, 13, 14, 15 | infcvgaux1i 15905 | . . . . 5 ⊢ (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧) |
17 | 16 | suprubii 12270 | . . . 4 ⊢ (-𝐵 ∈ 𝑅 → -𝐵 ≤ sup(𝑅, ℝ, < )) |
18 | 12, 17 | syl 17 | . . 3 ⊢ (𝐶 ∈ 𝑋 → -𝐵 ≤ sup(𝑅, ℝ, < )) |
19 | 3 | eleq1d 2829 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ)) |
20 | 19, 13 | vtoclga 3589 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → 𝐵 ∈ ℝ) |
21 | 16 | suprclii 12269 | . . . 4 ⊢ sup(𝑅, ℝ, < ) ∈ ℝ |
22 | lenegcon1 11794 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ sup(𝑅, ℝ, < ) ∈ ℝ) → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵)) | |
23 | 20, 21, 22 | sylancl 585 | . . 3 ⊢ (𝐶 ∈ 𝑋 → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵)) |
24 | 18, 23 | mpbid 232 | . 2 ⊢ (𝐶 ∈ 𝑋 → -sup(𝑅, ℝ, < ) ≤ 𝐵) |
25 | 1, 24 | eqbrtrid 5201 | 1 ⊢ (𝐶 ∈ 𝑋 → 𝑆 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 supcsup 9509 ℝcr 11183 < clt 11324 ≤ cle 11325 -cneg 11521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |