MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcvgaux2i Structured version   Visualization version   GIF version

Theorem infcvgaux2i 15831
Description: Auxiliary theorem for applications of supcvg 15829. (Contributed by NM, 4-Mar-2008.)
Hypotheses
Ref Expression
infcvg.1 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
infcvg.2 (𝑦𝑋𝐴 ∈ ℝ)
infcvg.3 𝑍𝑋
infcvg.4 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
infcvg.5a 𝑆 = -sup(𝑅, ℝ, < )
infcvg.13 (𝑦 = 𝐶𝐴 = 𝐵)
Assertion
Ref Expression
infcvgaux2i (𝐶𝑋𝑆𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑧,𝑤,𝑅   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦   𝑦,𝐶
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤)   𝐵(𝑧,𝑤)   𝐶(𝑥,𝑧,𝑤)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑧,𝑤)   𝑍(𝑧,𝑤)

Proof of Theorem infcvgaux2i
StepHypRef Expression
1 infcvg.5a . 2 𝑆 = -sup(𝑅, ℝ, < )
2 eqid 2730 . . . . . 6 -𝐵 = -𝐵
3 infcvg.13 . . . . . . . 8 (𝑦 = 𝐶𝐴 = 𝐵)
43negeqd 11422 . . . . . . 7 (𝑦 = 𝐶 → -𝐴 = -𝐵)
54rspceeqv 3614 . . . . . 6 ((𝐶𝑋 ∧ -𝐵 = -𝐵) → ∃𝑦𝑋 -𝐵 = -𝐴)
62, 5mpan2 691 . . . . 5 (𝐶𝑋 → ∃𝑦𝑋 -𝐵 = -𝐴)
7 negex 11426 . . . . . 6 -𝐵 ∈ V
8 eqeq1 2734 . . . . . . 7 (𝑥 = -𝐵 → (𝑥 = -𝐴 ↔ -𝐵 = -𝐴))
98rexbidv 3158 . . . . . 6 (𝑥 = -𝐵 → (∃𝑦𝑋 𝑥 = -𝐴 ↔ ∃𝑦𝑋 -𝐵 = -𝐴))
10 infcvg.1 . . . . . 6 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
117, 9, 10elab2 3652 . . . . 5 (-𝐵𝑅 ↔ ∃𝑦𝑋 -𝐵 = -𝐴)
126, 11sylibr 234 . . . 4 (𝐶𝑋 → -𝐵𝑅)
13 infcvg.2 . . . . . 6 (𝑦𝑋𝐴 ∈ ℝ)
14 infcvg.3 . . . . . 6 𝑍𝑋
15 infcvg.4 . . . . . 6 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
1610, 13, 14, 15infcvgaux1i 15830 . . . . 5 (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧)
1716suprubii 12165 . . . 4 (-𝐵𝑅 → -𝐵 ≤ sup(𝑅, ℝ, < ))
1812, 17syl 17 . . 3 (𝐶𝑋 → -𝐵 ≤ sup(𝑅, ℝ, < ))
193eleq1d 2814 . . . . 5 (𝑦 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ))
2019, 13vtoclga 3546 . . . 4 (𝐶𝑋𝐵 ∈ ℝ)
2116suprclii 12164 . . . 4 sup(𝑅, ℝ, < ) ∈ ℝ
22 lenegcon1 11689 . . . 4 ((𝐵 ∈ ℝ ∧ sup(𝑅, ℝ, < ) ∈ ℝ) → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵))
2320, 21, 22sylancl 586 . . 3 (𝐶𝑋 → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵))
2418, 23mpbid 232 . 2 (𝐶𝑋 → -sup(𝑅, ℝ, < ) ≤ 𝐵)
251, 24eqbrtrid 5145 1 (𝐶𝑋𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054   class class class wbr 5110  supcsup 9398  cr 11074   < clt 11215  cle 11216  -cneg 11413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator