Step | Hyp | Ref
| Expression |
1 | | nnuz 12621 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 12351 |
. . 3
⊢ (𝜑 → 1 ∈
ℤ) |
3 | | mertens.9 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
4 | 3 | rphalfcld 12784 |
. . . 4
⊢ (𝜑 → (𝐸 / 2) ∈
ℝ+) |
5 | | nn0uz 12620 |
. . . . . 6
⊢
ℕ0 = (ℤ≥‘0) |
6 | | 0zd 12331 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℤ) |
7 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (𝐾‘𝑗)) |
8 | | mertens.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) |
9 | | mertens.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈
ℂ) |
10 | 9 | abscld 15148 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(abs‘𝐴) ∈
ℝ) |
11 | 8, 10 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) ∈ ℝ) |
12 | | mertens.7 |
. . . . . 6
⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝
) |
13 | 5, 6, 7, 11, 12 | isumrecl 15477 |
. . . . 5
⊢ (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) ∈ ℝ) |
14 | 9 | absge0d 15156 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 0 ≤
(abs‘𝐴)) |
15 | 14, 8 | breqtrrd 5102 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 0 ≤
(𝐾‘𝑗)) |
16 | 5, 6, 7, 11, 12, 15 | isumge0 15478 |
. . . . 5
⊢ (𝜑 → 0 ≤ Σ𝑗 ∈ ℕ0
(𝐾‘𝑗)) |
17 | 13, 16 | ge0p1rpd 12802 |
. . . 4
⊢ (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ∈
ℝ+) |
18 | 4, 17 | rpdivcld 12789 |
. . 3
⊢ (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ∈
ℝ+) |
19 | | eqidd 2739 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (seq0( + , 𝐺)‘𝑚) = (seq0( + , 𝐺)‘𝑚)) |
20 | | mertens.4 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) |
21 | | mertens.5 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
22 | | mertens.8 |
. . . 4
⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝
) |
23 | 5, 6, 20, 21, 22 | isumclim2 15470 |
. . 3
⊢ (𝜑 → seq0( + , 𝐺) ⇝ Σ𝑘 ∈ ℕ0
𝐵) |
24 | 1, 2, 18, 19, 23 | climi2 15220 |
. 2
⊢ (𝜑 → ∃𝑠 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
25 | | eluznn 12658 |
. . . . . . . 8
⊢ ((𝑠 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘𝑠)) → 𝑚 ∈ ℕ) |
26 | 20, 21 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
27 | 5, 6, 26 | serf 13751 |
. . . . . . . . . . . 12
⊢ (𝜑 → seq0( + , 𝐺):ℕ0⟶ℂ) |
28 | | nnnn0 12240 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
29 | | ffvelrn 6959 |
. . . . . . . . . . . 12
⊢ ((seq0( +
, 𝐺):ℕ0⟶ℂ ∧
𝑚 ∈
ℕ0) → (seq0( + , 𝐺)‘𝑚) ∈ ℂ) |
30 | 27, 28, 29 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (seq0( + , 𝐺)‘𝑚) ∈ ℂ) |
31 | 5, 6, 20, 21, 22 | isumcl 15473 |
. . . . . . . . . . . 12
⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ) |
32 | 31 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0
𝐵 ∈
ℂ) |
33 | 30, 32 | abssubd 15165 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (abs‘((seq0( +
, 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0
𝐵)) =
(abs‘(Σ𝑘 ∈
ℕ0 𝐵
− (seq0( + , 𝐺)‘𝑚)))) |
34 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(ℤ≥‘(𝑚 + 1)) = (ℤ≥‘(𝑚 + 1)) |
35 | 28 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0) |
36 | | peano2nn0 12273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ0) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈
ℕ0) |
38 | 37 | nn0zd 12424 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℤ) |
39 | | simpll 764 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) → 𝜑) |
40 | | eluznn0 12657 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 + 1) ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘(𝑚 + 1))) → 𝑘 ∈ ℕ0) |
41 | 37, 40 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) → 𝑘 ∈
ℕ0) |
42 | 39, 41, 20 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) → (𝐺‘𝑘) = 𝐵) |
43 | 39, 41, 21 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) → 𝐵 ∈ ℂ) |
44 | 22 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → seq0( + , 𝐺) ∈ dom ⇝
) |
45 | 26 | adantlr 712 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
46 | 5, 37, 45 | iserex 15368 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (seq0( + , 𝐺) ∈ dom ⇝ ↔
seq(𝑚 + 1)( + , 𝐺) ∈ dom ⇝
)) |
47 | 44, 46 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → seq(𝑚 + 1)( + , 𝐺) ∈ dom ⇝ ) |
48 | 34, 38, 42, 43, 47 | isumcl 15473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈
(ℤ≥‘(𝑚 + 1))𝐵 ∈ ℂ) |
49 | 30, 48 | pncan2d 11334 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))𝐵) − (seq0( + , 𝐺)‘𝑚)) = Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))𝐵) |
50 | 20 | adantlr 712 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) |
51 | 21 | adantlr 712 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
52 | 5, 34, 37, 50, 51, 44 | isumsplit 15552 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0
𝐵 = (Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))𝐵)) |
53 | | nncn 11981 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℂ) |
54 | 53 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ) |
55 | | ax-1cn 10929 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℂ |
56 | | pncan 11227 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑚 + 1)
− 1) = 𝑚) |
57 | 54, 55, 56 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) − 1) = 𝑚) |
58 | 57 | oveq2d 7291 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (0...((𝑚 + 1) − 1)) = (0...𝑚)) |
59 | 58 | sumeq1d 15413 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 = Σ𝑘 ∈ (0...𝑚)𝐵) |
60 | | simpl 483 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝜑) |
61 | | elfznn0 13349 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (0...𝑚) → 𝑘 ∈ ℕ0) |
62 | 60, 61, 20 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑚)) → (𝐺‘𝑘) = 𝐵) |
63 | 35, 5 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈
(ℤ≥‘0)) |
64 | 60, 61, 21 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑚)) → 𝐵 ∈ ℂ) |
65 | 62, 63, 64 | fsumser 15442 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...𝑚)𝐵 = (seq0( + , 𝐺)‘𝑚)) |
66 | 59, 65 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 = (seq0( + , 𝐺)‘𝑚)) |
67 | 66 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))𝐵) = ((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))𝐵)) |
68 | 52, 67 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0
𝐵 = ((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))𝐵)) |
69 | 68 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (Σ𝑘 ∈ ℕ0
𝐵 − (seq0( + , 𝐺)‘𝑚)) = (((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))𝐵) − (seq0( + , 𝐺)‘𝑚))) |
70 | 42 | sumeq2dv 15415 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈
(ℤ≥‘(𝑚 + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))𝐵) |
71 | 49, 69, 70 | 3eqtr4d 2788 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (Σ𝑘 ∈ ℕ0
𝐵 − (seq0( + , 𝐺)‘𝑚)) = Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))(𝐺‘𝑘)) |
72 | 71 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) →
(abs‘(Σ𝑘 ∈
ℕ0 𝐵
− (seq0( + , 𝐺)‘𝑚))) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))(𝐺‘𝑘))) |
73 | 33, 72 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (abs‘((seq0( +
, 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0
𝐵)) =
(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑚 + 1))(𝐺‘𝑘))) |
74 | 73 | breq1d 5084 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((abs‘((seq0( +
, 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0
𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0
(𝐾‘𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑚 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
75 | 25, 74 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ∈ ℕ ∧ 𝑚 ∈ (ℤ≥‘𝑠))) → ((abs‘((seq0( +
, 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0
𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0
(𝐾‘𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑚 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
76 | 75 | anassrs 468 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘𝑠)) → ((abs‘((seq0( +
, 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0
𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0
(𝐾‘𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑚 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
77 | 76 | ralbidva 3111 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → (∀𝑚 ∈
(ℤ≥‘𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ↔ ∀𝑚 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑚 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
78 | | fvoveq1 7298 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (ℤ≥‘(𝑚 + 1)) =
(ℤ≥‘(𝑛 + 1))) |
79 | 78 | sumeq1d 15413 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) |
80 | 79 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))(𝐺‘𝑘)) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
81 | 80 | breq1d 5084 |
. . . . . 6
⊢ (𝑚 = 𝑛 → ((abs‘Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
82 | 81 | cbvralvw 3383 |
. . . . 5
⊢
(∀𝑚 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ↔ ∀𝑛 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
83 | 77, 82 | bitrdi 287 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → (∀𝑚 ∈
(ℤ≥‘𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ↔ ∀𝑛 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
84 | | mertens.11 |
. . . . . 6
⊢ (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
85 | | 0zd 12331 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → 0 ∈ ℤ) |
86 | 4 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → (𝐸 / 2) ∈
ℝ+) |
87 | 84 | simplbi 498 |
. . . . . . . . . . . . 13
⊢ (𝜓 → 𝑠 ∈ ℕ) |
88 | 87 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → 𝑠 ∈ ℕ) |
89 | 88 | nnrpd 12770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → 𝑠 ∈ ℝ+) |
90 | 86, 89 | rpdivcld 12789 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → ((𝐸 / 2) / 𝑠) ∈
ℝ+) |
91 | | mertens.10 |
. . . . . . . . . . . . 13
⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} |
92 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(ℤ≥‘(𝑛 + 1)) = (ℤ≥‘(𝑛 + 1)) |
93 | | elfznn0 13349 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ (0...(𝑠 − 1)) → 𝑛 ∈ ℕ0) |
94 | 93 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → 𝑛 ∈ ℕ0) |
95 | | peano2nn0 12273 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℕ0) |
96 | 94, 95 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (𝑛 + 1) ∈
ℕ0) |
97 | 96 | nn0zd 12424 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (𝑛 + 1) ∈ ℤ) |
98 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → (𝐺‘𝑘) = (𝐺‘𝑘)) |
99 | | simplll 772 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → 𝜑) |
100 | | eluznn0 12657 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 + 1) ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘(𝑛 + 1))) → 𝑘 ∈ ℕ0) |
101 | 96, 100 | sylan 580 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → 𝑘 ∈
ℕ0) |
102 | 99, 101, 26 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → (𝐺‘𝑘) ∈ ℂ) |
103 | 22 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → seq0( + , 𝐺) ∈ dom ⇝
) |
104 | 26 | ad4ant14 749 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
105 | 5, 96, 104 | iserex 15368 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (seq0( + , 𝐺) ∈ dom ⇝ ↔
seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝
)) |
106 | 103, 105 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ ) |
107 | 92, 97, 98, 102, 106 | isumcl 15473 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘) ∈ ℂ) |
108 | 107 | abscld 15148 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ∈ ℝ) |
109 | | eleq1a 2834 |
. . . . . . . . . . . . . . . 16
⊢
((abs‘Σ𝑘
∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ∈ ℝ → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) → 𝑧 ∈ ℝ)) |
110 | 108, 109 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) → 𝑧 ∈ ℝ)) |
111 | 110 | rexlimdva 3213 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) → 𝑧 ∈ ℝ)) |
112 | 111 | abssdv 4002 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} ⊆ ℝ) |
113 | 91, 112 | eqsstrid 3969 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → 𝑇 ⊆ ℝ) |
114 | | fzfid 13693 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝜓) → (0...(𝑠 − 1)) ∈ Fin) |
115 | | abrexfi 9119 |
. . . . . . . . . . . . . . 15
⊢
((0...(𝑠 − 1))
∈ Fin → {𝑧
∣ ∃𝑛 ∈
(0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} ∈ Fin) |
116 | 114, 115 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} ∈ Fin) |
117 | 91, 116 | eqeltrid 2843 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → 𝑇 ∈ Fin) |
118 | | nnm1nn0 12274 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ ℕ → (𝑠 − 1) ∈
ℕ0) |
119 | 88, 118 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝜓) → (𝑠 − 1) ∈
ℕ0) |
120 | 119, 5 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝜓) → (𝑠 − 1) ∈
(ℤ≥‘0)) |
121 | | eluzfz1 13263 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 − 1) ∈
(ℤ≥‘0) → 0 ∈ (0...(𝑠 − 1))) |
122 | 120, 121 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝜓) → 0 ∈ (0...(𝑠 − 1))) |
123 | | nnnn0 12240 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
124 | 123, 20 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) = 𝐵) |
125 | 124 | sumeq2dv 15415 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → Σ𝑘 ∈ ℕ (𝐺‘𝑘) = Σ𝑘 ∈ ℕ 𝐵) |
126 | 125 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝜓) → Σ𝑘 ∈ ℕ (𝐺‘𝑘) = Σ𝑘 ∈ ℕ 𝐵) |
127 | 126 | fveq2d 6778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝜓) → (abs‘Σ𝑘 ∈ ℕ (𝐺‘𝑘)) = (abs‘Σ𝑘 ∈ ℕ 𝐵)) |
128 | 127 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ ℕ (𝐺‘𝑘))) |
129 | | fv0p1e1 12096 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 0 →
(ℤ≥‘(𝑛 + 1)) =
(ℤ≥‘1)) |
130 | 129, 1 | eqtr4di 2796 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 0 →
(ℤ≥‘(𝑛 + 1)) = ℕ) |
131 | 130 | sumeq1d 15413 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 0 → Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘) = Σ𝑘 ∈ ℕ (𝐺‘𝑘)) |
132 | 131 | fveq2d 6778 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 0 →
(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) = (abs‘Σ𝑘 ∈ ℕ (𝐺‘𝑘))) |
133 | 132 | rspceeqv 3575 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ (0...(𝑠 − 1))
∧ (abs‘Σ𝑘
∈ ℕ 𝐵) =
(abs‘Σ𝑘 ∈
ℕ (𝐺‘𝑘))) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
134 | 122, 128,
133 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝜓) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
135 | | fvex 6787 |
. . . . . . . . . . . . . . . 16
⊢
(abs‘Σ𝑘
∈ ℕ 𝐵) ∈
V |
136 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (abs‘Σ𝑘 ∈ ℕ 𝐵) → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
137 | 136 | rexbidv 3226 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (abs‘Σ𝑘 ∈ ℕ 𝐵) → (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
138 | 135, 137,
91 | elab2 3613 |
. . . . . . . . . . . . . . 15
⊢
((abs‘Σ𝑘
∈ ℕ 𝐵) ∈
𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
139 | 134, 138 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇) |
140 | 139 | ne0d 4269 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → 𝑇 ≠ ∅) |
141 | | ltso 11055 |
. . . . . . . . . . . . . 14
⊢ < Or
ℝ |
142 | | fisupcl 9228 |
. . . . . . . . . . . . . 14
⊢ (( <
Or ℝ ∧ (𝑇 ∈
Fin ∧ 𝑇 ≠ ∅
∧ 𝑇 ⊆ ℝ))
→ sup(𝑇, ℝ, <
) ∈ 𝑇) |
143 | 141, 142 | mpan 687 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ Fin ∧ 𝑇 ≠ ∅ ∧ 𝑇 ⊆ ℝ) →
sup(𝑇, ℝ, < )
∈ 𝑇) |
144 | 117, 140,
113, 143 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → sup(𝑇, ℝ, < ) ∈ 𝑇) |
145 | 113, 144 | sseldd 3922 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → sup(𝑇, ℝ, < ) ∈
ℝ) |
146 | | 0red 10978 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → 0 ∈ ℝ) |
147 | 123, 21 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℂ) |
148 | | 1nn0 12249 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℕ0 |
149 | 148 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 1 ∈
ℕ0) |
150 | 5, 149, 26 | iserex 15368 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (seq0( + , 𝐺) ∈ dom ⇝ ↔
seq1( + , 𝐺) ∈ dom
⇝ )) |
151 | 22, 150 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → seq1( + , 𝐺) ∈ dom ⇝
) |
152 | 1, 2, 124, 147, 151 | isumcl 15473 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Σ𝑘 ∈ ℕ 𝐵 ∈ ℂ) |
153 | 152 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → Σ𝑘 ∈ ℕ 𝐵 ∈ ℂ) |
154 | 153 | abscld 15148 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈
ℝ) |
155 | 153 | absge0d 15156 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → 0 ≤ (abs‘Σ𝑘 ∈ ℕ 𝐵)) |
156 | | fimaxre2 11920 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ⊆ ℝ ∧ 𝑇 ∈ Fin) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑇 𝑤 ≤ 𝑧) |
157 | 113, 117,
156 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑇 𝑤 ≤ 𝑧) |
158 | 113, 140,
157, 139 | suprubd 11937 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ≤ sup(𝑇, ℝ, < )) |
159 | 146, 154,
145, 155, 158 | letrd 11132 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → 0 ≤ sup(𝑇, ℝ, < )) |
160 | 145, 159 | ge0p1rpd 12802 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → (sup(𝑇, ℝ, < ) + 1) ∈
ℝ+) |
161 | 90, 160 | rpdivcld 12789 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈
ℝ+) |
162 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → (𝐾‘𝑛) = (𝐾‘𝑚)) |
163 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
↦ (𝐾‘𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐾‘𝑛)) |
164 | | fvex 6787 |
. . . . . . . . . . 11
⊢ (𝐾‘𝑚) ∈ V |
165 | 162, 163,
164 | fvmpt 6875 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ (𝐾‘𝑛))‘𝑚) = (𝐾‘𝑚)) |
166 | 165 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐾‘𝑛))‘𝑚) = (𝐾‘𝑚)) |
167 | | nn0ex 12239 |
. . . . . . . . . . . . 13
⊢
ℕ0 ∈ V |
168 | 167 | mptex 7099 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
↦ (𝐾‘𝑛)) ∈ V |
169 | 168 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐾‘𝑛)) ∈ V) |
170 | | elnn0uz 12623 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ0
↔ 𝑗 ∈
(ℤ≥‘0)) |
171 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑗 → (𝐾‘𝑛) = (𝐾‘𝑗)) |
172 | | fvex 6787 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾‘𝑗) ∈ V |
173 | 171, 163,
172 | fvmpt 6875 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ (𝐾‘𝑛))‘𝑗) = (𝐾‘𝑗)) |
174 | 173 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐾‘𝑛))‘𝑗) = (𝐾‘𝑗)) |
175 | 170, 174 | sylan2br 595 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘0))
→ ((𝑛 ∈
ℕ0 ↦ (𝐾‘𝑛))‘𝑗) = (𝐾‘𝑗)) |
176 | 6, 175 | seqfeq 13748 |
. . . . . . . . . . . 12
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ (𝐾‘𝑛))) = seq0( + , 𝐾)) |
177 | 176, 12 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ (𝐾‘𝑛))) ∈ dom ⇝
) |
178 | 174, 8 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐾‘𝑛))‘𝑗) = (abs‘𝐴)) |
179 | 178, 10 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐾‘𝑛))‘𝑗) ∈ ℝ) |
180 | 179 | recnd 11003 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐾‘𝑛))‘𝑗) ∈ ℂ) |
181 | 5, 6, 169, 177, 180 | serf0 15392 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐾‘𝑛)) ⇝ 0) |
182 | 181 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → (𝑛 ∈ ℕ0 ↦ (𝐾‘𝑛)) ⇝ 0) |
183 | 5, 85, 161, 166, 182 | climi0 15221 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → ∃𝑡 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑡)(abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) |
184 | | simplll 772 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈
(ℤ≥‘𝑡)) → 𝜑) |
185 | | eluznn0 12657 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℕ0
∧ 𝑚 ∈
(ℤ≥‘𝑡)) → 𝑚 ∈ ℕ0) |
186 | 185 | adantll 711 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈
(ℤ≥‘𝑡)) → 𝑚 ∈ ℕ0) |
187 | 11, 15 | absidd 15134 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(abs‘(𝐾‘𝑗)) = (𝐾‘𝑗)) |
188 | 187 | ralrimiva 3103 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑗 ∈ ℕ0 (abs‘(𝐾‘𝑗)) = (𝐾‘𝑗)) |
189 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑚 → (𝐾‘𝑗) = (𝐾‘𝑚)) |
190 | 189 | fveq2d 6778 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑚 → (abs‘(𝐾‘𝑗)) = (abs‘(𝐾‘𝑚))) |
191 | 190, 189 | eqeq12d 2754 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑚 → ((abs‘(𝐾‘𝑗)) = (𝐾‘𝑗) ↔ (abs‘(𝐾‘𝑚)) = (𝐾‘𝑚))) |
192 | 191 | rspccva 3560 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑗 ∈
ℕ0 (abs‘(𝐾‘𝑗)) = (𝐾‘𝑗) ∧ 𝑚 ∈ ℕ0) →
(abs‘(𝐾‘𝑚)) = (𝐾‘𝑚)) |
193 | 188, 192 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(abs‘(𝐾‘𝑚)) = (𝐾‘𝑚)) |
194 | 184, 186,
193 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈
(ℤ≥‘𝑡)) → (abs‘(𝐾‘𝑚)) = (𝐾‘𝑚)) |
195 | 194 | breq1d 5084 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈
(ℤ≥‘𝑡)) → ((abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ (𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) |
196 | 195 | ralbidva 3111 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑡 ∈ ℕ0) →
(∀𝑚 ∈
(ℤ≥‘𝑡)(abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ ∀𝑚 ∈
(ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) |
197 | 162 | breq1d 5084 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → ((𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ (𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) |
198 | 197 | cbvralvw 3383 |
. . . . . . . . . . 11
⊢
(∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ ∀𝑚 ∈
(ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) |
199 | 196, 198 | bitr4di 289 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑡 ∈ ℕ0) →
(∀𝑚 ∈
(ℤ≥‘𝑡)(abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ ∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) |
200 | | mertens.1 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴) |
201 | 200 | ad4ant14 749 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑗 ∈ ℕ0)
→ (𝐹‘𝑗) = 𝐴) |
202 | 8 | ad4ant14 749 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑗 ∈ ℕ0)
→ (𝐾‘𝑗) = (abs‘𝐴)) |
203 | 9 | ad4ant14 749 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑗 ∈ ℕ0)
→ 𝐴 ∈
ℂ) |
204 | 20 | ad4ant14 749 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑘 ∈ ℕ0)
→ (𝐺‘𝑘) = 𝐵) |
205 | 21 | ad4ant14 749 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑘 ∈ ℕ0)
→ 𝐵 ∈
ℂ) |
206 | | mertens.6 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
207 | 206 | ad4ant14 749 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑘 ∈ ℕ0)
→ (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
208 | 12 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → seq0( + ,
𝐾) ∈ dom ⇝
) |
209 | 22 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → seq0( + ,
𝐺) ∈ dom ⇝
) |
210 | 3 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → 𝐸 ∈
ℝ+) |
211 | 198 | anbi2i 623 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℕ0
∧ ∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) ↔ (𝑡 ∈ ℕ0
∧ ∀𝑚 ∈
(ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) |
212 | 211 | anbi2i 623 |
. . . . . . . . . . . . . 14
⊢ ((𝜓 ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ↔ (𝜓 ∧ (𝑡 ∈ ℕ0 ∧
∀𝑚 ∈
(ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))) |
213 | 212 | biimpi 215 |
. . . . . . . . . . . . 13
⊢ ((𝜓 ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧
∀𝑚 ∈
(ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))) |
214 | 213 | adantll 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧
∀𝑚 ∈
(ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))) |
215 | 113, 140,
157 | 3jca 1127 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑇 𝑤 ≤ 𝑧)) |
216 | 159, 215 | jca 512 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → (0 ≤ sup(𝑇, ℝ, < ) ∧ (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑇 𝑤 ≤ 𝑧))) |
217 | 216 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → (0 ≤
sup(𝑇, ℝ, < )
∧ (𝑇 ⊆ ℝ
∧ 𝑇 ≠ ∅ ∧
∃𝑧 ∈ ℝ
∀𝑤 ∈ 𝑇 𝑤 ≤ 𝑧))) |
218 | 201, 202,
203, 204, 205, 207, 208, 209, 210, 91, 84, 214, 217 | mertenslem1 15596 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) →
∃𝑦 ∈
ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |
219 | 218 | expr 457 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑡 ∈ ℕ0) →
(∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) → ∃𝑦 ∈ ℕ0
∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
220 | 199, 219 | sylbid 239 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑡 ∈ ℕ0) →
(∀𝑚 ∈
(ℤ≥‘𝑡)(abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) → ∃𝑦 ∈ ℕ0
∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
221 | 220 | rexlimdva 3213 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → (∃𝑡 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑡)(abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) → ∃𝑦 ∈ ℕ0
∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
222 | 183, 221 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝜓) → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |
223 | 222 | ex 413 |
. . . . . 6
⊢ (𝜑 → (𝜓 → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
224 | 84, 223 | syl5bir 242 |
. . . . 5
⊢ (𝜑 → ((𝑠 ∈ ℕ ∧ ∀𝑛 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
225 | 224 | expdimp 453 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → (∀𝑛 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
226 | 83, 225 | sylbid 239 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → (∀𝑚 ∈
(ℤ≥‘𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
227 | 226 | rexlimdva 3213 |
. 2
⊢ (𝜑 → (∃𝑠 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
228 | 24, 227 | mpd 15 |
1
⊢ (𝜑 → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |