MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supmullem1 Structured version   Visualization version   GIF version

Theorem supmullem1 11249
Description: Lemma for supmul 11251. (Contributed by Mario Carneiro, 5-Jul-2013.)
Hypotheses
Ref Expression
supmul.1 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
supmul.2 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
Assertion
Ref Expression
supmullem1 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
Distinct variable groups:   𝐴,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝐵,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝑥,𝐶,𝑤   𝜑,𝑏,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣)   𝐶(𝑦,𝑧,𝑣,𝑏)

Proof of Theorem supmullem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3353 . . . 4 𝑤 ∈ V
2 oveq1 6851 . . . . . . . 8 (𝑣 = 𝑎 → (𝑣 · 𝑏) = (𝑎 · 𝑏))
32eqeq2d 2775 . . . . . . 7 (𝑣 = 𝑎 → (𝑧 = (𝑣 · 𝑏) ↔ 𝑧 = (𝑎 · 𝑏)))
43rexbidv 3199 . . . . . 6 (𝑣 = 𝑎 → (∃𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)))
54cbvrexv 3320 . . . . 5 (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏))
6 eqeq1 2769 . . . . . 6 (𝑧 = 𝑤 → (𝑧 = (𝑎 · 𝑏) ↔ 𝑤 = (𝑎 · 𝑏)))
762rexbidv 3204 . . . . 5 (𝑧 = 𝑤 → (∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
85, 7syl5bb 274 . . . 4 (𝑧 = 𝑤 → (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
9 supmul.1 . . . 4 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
101, 8, 9elab2 3511 . . 3 (𝑤𝐶 ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
11 supmul.2 . . . . . . . . . . 11 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
1211simp2bi 1176 . . . . . . . . . 10 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
1312simp1d 1172 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
1413sselda 3763 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑎 ∈ ℝ)
1514adantrr 708 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑎 ∈ ℝ)
16 suprcl 11239 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
1712, 16syl 17 . . . . . . . 8 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
1817adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → sup(𝐴, ℝ, < ) ∈ ℝ)
1911simp3bi 1177 . . . . . . . . . 10 (𝜑 → (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥))
2019simp1d 1172 . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ)
2120sselda 3763 . . . . . . . 8 ((𝜑𝑏𝐵) → 𝑏 ∈ ℝ)
2221adantrl 707 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑏 ∈ ℝ)
23 suprcl 11239 . . . . . . . . 9 ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) → sup(𝐵, ℝ, < ) ∈ ℝ)
2419, 23syl 17 . . . . . . . 8 (𝜑 → sup(𝐵, ℝ, < ) ∈ ℝ)
2524adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → sup(𝐵, ℝ, < ) ∈ ℝ)
26 simp1l 1254 . . . . . . . . . . 11 (((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → ∀𝑥𝐴 0 ≤ 𝑥)
2711, 26sylbi 208 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 0 ≤ 𝑥)
28 breq2 4815 . . . . . . . . . . 11 (𝑥 = 𝑎 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑎))
2928rspccv 3459 . . . . . . . . . 10 (∀𝑥𝐴 0 ≤ 𝑥 → (𝑎𝐴 → 0 ≤ 𝑎))
3027, 29syl 17 . . . . . . . . 9 (𝜑 → (𝑎𝐴 → 0 ≤ 𝑎))
3130imp 395 . . . . . . . 8 ((𝜑𝑎𝐴) → 0 ≤ 𝑎)
3231adantrr 708 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 0 ≤ 𝑎)
33 simp1r 1255 . . . . . . . . . . 11 (((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → ∀𝑥𝐵 0 ≤ 𝑥)
3411, 33sylbi 208 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐵 0 ≤ 𝑥)
35 breq2 4815 . . . . . . . . . . 11 (𝑥 = 𝑏 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑏))
3635rspccv 3459 . . . . . . . . . 10 (∀𝑥𝐵 0 ≤ 𝑥 → (𝑏𝐵 → 0 ≤ 𝑏))
3734, 36syl 17 . . . . . . . . 9 (𝜑 → (𝑏𝐵 → 0 ≤ 𝑏))
3837imp 395 . . . . . . . 8 ((𝜑𝑏𝐵) → 0 ≤ 𝑏)
3938adantrl 707 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 0 ≤ 𝑏)
40 suprub 11240 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
4112, 40sylan 575 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
4241adantrr 708 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑎 ≤ sup(𝐴, ℝ, < ))
43 suprub 11240 . . . . . . . . 9 (((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) ∧ 𝑏𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < ))
4419, 43sylan 575 . . . . . . . 8 ((𝜑𝑏𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < ))
4544adantrl 707 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑏 ≤ sup(𝐵, ℝ, < ))
4615, 18, 22, 25, 32, 39, 42, 45lemul12ad 11222 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
4746ex 401 . . . . 5 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
48 breq1 4814 . . . . . 6 (𝑤 = (𝑎 · 𝑏) → (𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ↔ (𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
4948biimprcd 241 . . . . 5 ((𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) → (𝑤 = (𝑎 · 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
5047, 49syl6 35 . . . 4 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑤 = (𝑎 · 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))))
5150rexlimdvv 3184 . . 3 (𝜑 → (∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
5210, 51syl5bi 233 . 2 (𝜑 → (𝑤𝐶𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
5352ralrimiv 3112 1 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  {cab 2751  wne 2937  wral 3055  wrex 3056  wss 3734  c0 4081   class class class wbr 4811  (class class class)co 6844  supcsup 8555  cr 10190  0cc0 10191   · cmul 10196   < clt 10330  cle 10331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-po 5200  df-so 5201  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-sup 8557  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525
This theorem is referenced by:  supmullem2  11250  supmul  11251
  Copyright terms: Public domain W3C validator