MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supmullem1 Structured version   Visualization version   GIF version

Theorem supmullem1 12217
Description: Lemma for supmul 12219. (Contributed by Mario Carneiro, 5-Jul-2013.)
Hypotheses
Ref Expression
supmul.1 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
supmul.2 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
Assertion
Ref Expression
supmullem1 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
Distinct variable groups:   𝐴,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝐵,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝑥,𝐶,𝑤   𝜑,𝑏,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣)   𝐶(𝑦,𝑧,𝑣,𝑏)

Proof of Theorem supmullem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3465 . . . 4 𝑤 ∈ V
2 oveq1 7426 . . . . . . . 8 (𝑣 = 𝑎 → (𝑣 · 𝑏) = (𝑎 · 𝑏))
32eqeq2d 2736 . . . . . . 7 (𝑣 = 𝑎 → (𝑧 = (𝑣 · 𝑏) ↔ 𝑧 = (𝑎 · 𝑏)))
43rexbidv 3168 . . . . . 6 (𝑣 = 𝑎 → (∃𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)))
54cbvrexvw 3225 . . . . 5 (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏))
6 eqeq1 2729 . . . . . 6 (𝑧 = 𝑤 → (𝑧 = (𝑎 · 𝑏) ↔ 𝑤 = (𝑎 · 𝑏)))
762rexbidv 3209 . . . . 5 (𝑧 = 𝑤 → (∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
85, 7bitrid 282 . . . 4 (𝑧 = 𝑤 → (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
9 supmul.1 . . . 4 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
101, 8, 9elab2 3668 . . 3 (𝑤𝐶 ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
11 supmul.2 . . . . . . . . . . 11 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
1211simp2bi 1143 . . . . . . . . . 10 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
1312simp1d 1139 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
1413sselda 3976 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑎 ∈ ℝ)
1514adantrr 715 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑎 ∈ ℝ)
16 suprcl 12207 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
1712, 16syl 17 . . . . . . . 8 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
1817adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → sup(𝐴, ℝ, < ) ∈ ℝ)
1911simp3bi 1144 . . . . . . . . . 10 (𝜑 → (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥))
2019simp1d 1139 . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ)
2120sselda 3976 . . . . . . . 8 ((𝜑𝑏𝐵) → 𝑏 ∈ ℝ)
2221adantrl 714 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑏 ∈ ℝ)
23 suprcl 12207 . . . . . . . . 9 ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) → sup(𝐵, ℝ, < ) ∈ ℝ)
2419, 23syl 17 . . . . . . . 8 (𝜑 → sup(𝐵, ℝ, < ) ∈ ℝ)
2524adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → sup(𝐵, ℝ, < ) ∈ ℝ)
26 simp1l 1194 . . . . . . . . . . 11 (((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → ∀𝑥𝐴 0 ≤ 𝑥)
2711, 26sylbi 216 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 0 ≤ 𝑥)
28 breq2 5153 . . . . . . . . . . 11 (𝑥 = 𝑎 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑎))
2928rspccv 3603 . . . . . . . . . 10 (∀𝑥𝐴 0 ≤ 𝑥 → (𝑎𝐴 → 0 ≤ 𝑎))
3027, 29syl 17 . . . . . . . . 9 (𝜑 → (𝑎𝐴 → 0 ≤ 𝑎))
3130imp 405 . . . . . . . 8 ((𝜑𝑎𝐴) → 0 ≤ 𝑎)
3231adantrr 715 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 0 ≤ 𝑎)
33 simp1r 1195 . . . . . . . . . . 11 (((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → ∀𝑥𝐵 0 ≤ 𝑥)
3411, 33sylbi 216 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐵 0 ≤ 𝑥)
35 breq2 5153 . . . . . . . . . . 11 (𝑥 = 𝑏 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑏))
3635rspccv 3603 . . . . . . . . . 10 (∀𝑥𝐵 0 ≤ 𝑥 → (𝑏𝐵 → 0 ≤ 𝑏))
3734, 36syl 17 . . . . . . . . 9 (𝜑 → (𝑏𝐵 → 0 ≤ 𝑏))
3837imp 405 . . . . . . . 8 ((𝜑𝑏𝐵) → 0 ≤ 𝑏)
3938adantrl 714 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 0 ≤ 𝑏)
40 suprub 12208 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
4112, 40sylan 578 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
4241adantrr 715 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑎 ≤ sup(𝐴, ℝ, < ))
43 suprub 12208 . . . . . . . . 9 (((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) ∧ 𝑏𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < ))
4419, 43sylan 578 . . . . . . . 8 ((𝜑𝑏𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < ))
4544adantrl 714 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑏 ≤ sup(𝐵, ℝ, < ))
4615, 18, 22, 25, 32, 39, 42, 45lemul12ad 12189 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
4746ex 411 . . . . 5 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
48 breq1 5152 . . . . . 6 (𝑤 = (𝑎 · 𝑏) → (𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ↔ (𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
4948biimprcd 249 . . . . 5 ((𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) → (𝑤 = (𝑎 · 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
5047, 49syl6 35 . . . 4 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑤 = (𝑎 · 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))))
5150rexlimdvv 3200 . . 3 (𝜑 → (∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
5210, 51biimtrid 241 . 2 (𝜑 → (𝑤𝐶𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
5352ralrimiv 3134 1 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  {cab 2702  wne 2929  wral 3050  wrex 3059  wss 3944  c0 4322   class class class wbr 5149  (class class class)co 7419  supcsup 9465  cr 11139  0cc0 11140   · cmul 11145   < clt 11280  cle 11281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9467  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479
This theorem is referenced by:  supmullem2  12218  supmul  12219
  Copyright terms: Public domain W3C validator