MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supmullem1 Structured version   Visualization version   GIF version

Theorem supmullem1 12265
Description: Lemma for supmul 12267. (Contributed by Mario Carneiro, 5-Jul-2013.)
Hypotheses
Ref Expression
supmul.1 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
supmul.2 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
Assertion
Ref Expression
supmullem1 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
Distinct variable groups:   𝐴,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝐵,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝑥,𝐶,𝑤   𝜑,𝑏,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣)   𝐶(𝑦,𝑧,𝑣,𝑏)

Proof of Theorem supmullem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . 4 𝑤 ∈ V
2 oveq1 7455 . . . . . . . 8 (𝑣 = 𝑎 → (𝑣 · 𝑏) = (𝑎 · 𝑏))
32eqeq2d 2751 . . . . . . 7 (𝑣 = 𝑎 → (𝑧 = (𝑣 · 𝑏) ↔ 𝑧 = (𝑎 · 𝑏)))
43rexbidv 3185 . . . . . 6 (𝑣 = 𝑎 → (∃𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)))
54cbvrexvw 3244 . . . . 5 (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏))
6 eqeq1 2744 . . . . . 6 (𝑧 = 𝑤 → (𝑧 = (𝑎 · 𝑏) ↔ 𝑤 = (𝑎 · 𝑏)))
762rexbidv 3228 . . . . 5 (𝑧 = 𝑤 → (∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
85, 7bitrid 283 . . . 4 (𝑧 = 𝑤 → (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
9 supmul.1 . . . 4 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
101, 8, 9elab2 3698 . . 3 (𝑤𝐶 ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
11 supmul.2 . . . . . . . . . . 11 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
1211simp2bi 1146 . . . . . . . . . 10 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
1312simp1d 1142 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
1413sselda 4008 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑎 ∈ ℝ)
1514adantrr 716 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑎 ∈ ℝ)
16 suprcl 12255 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
1712, 16syl 17 . . . . . . . 8 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
1817adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → sup(𝐴, ℝ, < ) ∈ ℝ)
1911simp3bi 1147 . . . . . . . . . 10 (𝜑 → (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥))
2019simp1d 1142 . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ)
2120sselda 4008 . . . . . . . 8 ((𝜑𝑏𝐵) → 𝑏 ∈ ℝ)
2221adantrl 715 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑏 ∈ ℝ)
23 suprcl 12255 . . . . . . . . 9 ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) → sup(𝐵, ℝ, < ) ∈ ℝ)
2419, 23syl 17 . . . . . . . 8 (𝜑 → sup(𝐵, ℝ, < ) ∈ ℝ)
2524adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → sup(𝐵, ℝ, < ) ∈ ℝ)
26 simp1l 1197 . . . . . . . . . . 11 (((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → ∀𝑥𝐴 0 ≤ 𝑥)
2711, 26sylbi 217 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 0 ≤ 𝑥)
28 breq2 5170 . . . . . . . . . . 11 (𝑥 = 𝑎 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑎))
2928rspccv 3632 . . . . . . . . . 10 (∀𝑥𝐴 0 ≤ 𝑥 → (𝑎𝐴 → 0 ≤ 𝑎))
3027, 29syl 17 . . . . . . . . 9 (𝜑 → (𝑎𝐴 → 0 ≤ 𝑎))
3130imp 406 . . . . . . . 8 ((𝜑𝑎𝐴) → 0 ≤ 𝑎)
3231adantrr 716 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 0 ≤ 𝑎)
33 simp1r 1198 . . . . . . . . . . 11 (((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → ∀𝑥𝐵 0 ≤ 𝑥)
3411, 33sylbi 217 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐵 0 ≤ 𝑥)
35 breq2 5170 . . . . . . . . . . 11 (𝑥 = 𝑏 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑏))
3635rspccv 3632 . . . . . . . . . 10 (∀𝑥𝐵 0 ≤ 𝑥 → (𝑏𝐵 → 0 ≤ 𝑏))
3734, 36syl 17 . . . . . . . . 9 (𝜑 → (𝑏𝐵 → 0 ≤ 𝑏))
3837imp 406 . . . . . . . 8 ((𝜑𝑏𝐵) → 0 ≤ 𝑏)
3938adantrl 715 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 0 ≤ 𝑏)
40 suprub 12256 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
4112, 40sylan 579 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
4241adantrr 716 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑎 ≤ sup(𝐴, ℝ, < ))
43 suprub 12256 . . . . . . . . 9 (((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) ∧ 𝑏𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < ))
4419, 43sylan 579 . . . . . . . 8 ((𝜑𝑏𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < ))
4544adantrl 715 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑏 ≤ sup(𝐵, ℝ, < ))
4615, 18, 22, 25, 32, 39, 42, 45lemul12ad 12237 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
4746ex 412 . . . . 5 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
48 breq1 5169 . . . . . 6 (𝑤 = (𝑎 · 𝑏) → (𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ↔ (𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
4948biimprcd 250 . . . . 5 ((𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) → (𝑤 = (𝑎 · 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
5047, 49syl6 35 . . . 4 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑤 = (𝑎 · 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))))
5150rexlimdvv 3218 . . 3 (𝜑 → (∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
5210, 51biimtrid 242 . 2 (𝜑 → (𝑤𝐶𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
5352ralrimiv 3151 1 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352   class class class wbr 5166  (class class class)co 7448  supcsup 9509  cr 11183  0cc0 11184   · cmul 11189   < clt 11324  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523
This theorem is referenced by:  supmullem2  12266  supmul  12267
  Copyright terms: Public domain W3C validator