MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supmullem1 Structured version   Visualization version   GIF version

Theorem supmullem1 11465
Description: Lemma for supmul 11467. (Contributed by Mario Carneiro, 5-Jul-2013.)
Hypotheses
Ref Expression
supmul.1 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
supmul.2 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
Assertion
Ref Expression
supmullem1 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
Distinct variable groups:   𝐴,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝐵,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝑥,𝐶,𝑤   𝜑,𝑏,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣)   𝐶(𝑦,𝑧,𝑣,𝑏)

Proof of Theorem supmullem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3443 . . . 4 𝑤 ∈ V
2 oveq1 7030 . . . . . . . 8 (𝑣 = 𝑎 → (𝑣 · 𝑏) = (𝑎 · 𝑏))
32eqeq2d 2807 . . . . . . 7 (𝑣 = 𝑎 → (𝑧 = (𝑣 · 𝑏) ↔ 𝑧 = (𝑎 · 𝑏)))
43rexbidv 3262 . . . . . 6 (𝑣 = 𝑎 → (∃𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)))
54cbvrexv 3406 . . . . 5 (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏))
6 eqeq1 2801 . . . . . 6 (𝑧 = 𝑤 → (𝑧 = (𝑎 · 𝑏) ↔ 𝑤 = (𝑎 · 𝑏)))
762rexbidv 3265 . . . . 5 (𝑧 = 𝑤 → (∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
85, 7syl5bb 284 . . . 4 (𝑧 = 𝑤 → (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
9 supmul.1 . . . 4 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
101, 8, 9elab2 3611 . . 3 (𝑤𝐶 ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
11 supmul.2 . . . . . . . . . . 11 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
1211simp2bi 1139 . . . . . . . . . 10 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
1312simp1d 1135 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
1413sselda 3895 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑎 ∈ ℝ)
1514adantrr 713 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑎 ∈ ℝ)
16 suprcl 11455 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
1712, 16syl 17 . . . . . . . 8 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
1817adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → sup(𝐴, ℝ, < ) ∈ ℝ)
1911simp3bi 1140 . . . . . . . . . 10 (𝜑 → (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥))
2019simp1d 1135 . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ)
2120sselda 3895 . . . . . . . 8 ((𝜑𝑏𝐵) → 𝑏 ∈ ℝ)
2221adantrl 712 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑏 ∈ ℝ)
23 suprcl 11455 . . . . . . . . 9 ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) → sup(𝐵, ℝ, < ) ∈ ℝ)
2419, 23syl 17 . . . . . . . 8 (𝜑 → sup(𝐵, ℝ, < ) ∈ ℝ)
2524adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → sup(𝐵, ℝ, < ) ∈ ℝ)
26 simp1l 1190 . . . . . . . . . . 11 (((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → ∀𝑥𝐴 0 ≤ 𝑥)
2711, 26sylbi 218 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 0 ≤ 𝑥)
28 breq2 4972 . . . . . . . . . . 11 (𝑥 = 𝑎 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑎))
2928rspccv 3558 . . . . . . . . . 10 (∀𝑥𝐴 0 ≤ 𝑥 → (𝑎𝐴 → 0 ≤ 𝑎))
3027, 29syl 17 . . . . . . . . 9 (𝜑 → (𝑎𝐴 → 0 ≤ 𝑎))
3130imp 407 . . . . . . . 8 ((𝜑𝑎𝐴) → 0 ≤ 𝑎)
3231adantrr 713 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 0 ≤ 𝑎)
33 simp1r 1191 . . . . . . . . . . 11 (((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → ∀𝑥𝐵 0 ≤ 𝑥)
3411, 33sylbi 218 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐵 0 ≤ 𝑥)
35 breq2 4972 . . . . . . . . . . 11 (𝑥 = 𝑏 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑏))
3635rspccv 3558 . . . . . . . . . 10 (∀𝑥𝐵 0 ≤ 𝑥 → (𝑏𝐵 → 0 ≤ 𝑏))
3734, 36syl 17 . . . . . . . . 9 (𝜑 → (𝑏𝐵 → 0 ≤ 𝑏))
3837imp 407 . . . . . . . 8 ((𝜑𝑏𝐵) → 0 ≤ 𝑏)
3938adantrl 712 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 0 ≤ 𝑏)
40 suprub 11456 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
4112, 40sylan 580 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
4241adantrr 713 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑎 ≤ sup(𝐴, ℝ, < ))
43 suprub 11456 . . . . . . . . 9 (((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) ∧ 𝑏𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < ))
4419, 43sylan 580 . . . . . . . 8 ((𝜑𝑏𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < ))
4544adantrl 712 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑏 ≤ sup(𝐵, ℝ, < ))
4615, 18, 22, 25, 32, 39, 42, 45lemul12ad 11436 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
4746ex 413 . . . . 5 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
48 breq1 4971 . . . . . 6 (𝑤 = (𝑎 · 𝑏) → (𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ↔ (𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
4948biimprcd 251 . . . . 5 ((𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) → (𝑤 = (𝑎 · 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
5047, 49syl6 35 . . . 4 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑤 = (𝑎 · 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))))
5150rexlimdvv 3258 . . 3 (𝜑 → (∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
5210, 51syl5bi 243 . 2 (𝜑 → (𝑤𝐶𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
5352ralrimiv 3150 1 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wcel 2083  {cab 2777  wne 2986  wral 3107  wrex 3108  wss 3865  c0 4217   class class class wbr 4968  (class class class)co 7023  supcsup 8757  cr 10389  0cc0 10390   · cmul 10395   < clt 10528  cle 10529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-po 5369  df-so 5370  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-sup 8759  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726
This theorem is referenced by:  supmullem2  11466  supmul  11467
  Copyright terms: Public domain W3C validator