MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supmullem1 Structured version   Visualization version   GIF version

Theorem supmullem1 12188
Description: Lemma for supmul 12190. (Contributed by Mario Carneiro, 5-Jul-2013.)
Hypotheses
Ref Expression
supmul.1 ๐ถ = {๐‘ง โˆฃ โˆƒ๐‘ฃ โˆˆ ๐ด โˆƒ๐‘ โˆˆ ๐ต ๐‘ง = (๐‘ฃ ยท ๐‘)}
supmul.2 (๐œ‘ โ†” ((โˆ€๐‘ฅ โˆˆ ๐ด 0 โ‰ค ๐‘ฅ โˆง โˆ€๐‘ฅ โˆˆ ๐ต 0 โ‰ค ๐‘ฅ) โˆง (๐ด โІ โ„ โˆง ๐ด โ‰  โˆ… โˆง โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐ด ๐‘ฆ โ‰ค ๐‘ฅ) โˆง (๐ต โІ โ„ โˆง ๐ต โ‰  โˆ… โˆง โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐ต ๐‘ฆ โ‰ค ๐‘ฅ)))
Assertion
Ref Expression
supmullem1 (๐œ‘ โ†’ โˆ€๐‘ค โˆˆ ๐ถ ๐‘ค โ‰ค (sup(๐ด, โ„, < ) ยท sup(๐ต, โ„, < )))
Distinct variable groups:   ๐ด,๐‘,๐‘ฃ,๐‘ฅ,๐‘ฆ,๐‘ค,๐‘ง   ๐ต,๐‘,๐‘ฃ,๐‘ฅ,๐‘ฆ,๐‘ค,๐‘ง   ๐‘ฅ,๐ถ,๐‘ค   ๐œ‘,๐‘,๐‘ค,๐‘ง
Allowed substitution hints:   ๐œ‘(๐‘ฅ,๐‘ฆ,๐‘ฃ)   ๐ถ(๐‘ฆ,๐‘ง,๐‘ฃ,๐‘)

Proof of Theorem supmullem1
Dummy variable ๐‘Ž is distinct from all other variables.
StepHypRef Expression
1 vex 3476 . . . 4 ๐‘ค โˆˆ V
2 oveq1 7418 . . . . . . . 8 (๐‘ฃ = ๐‘Ž โ†’ (๐‘ฃ ยท ๐‘) = (๐‘Ž ยท ๐‘))
32eqeq2d 2741 . . . . . . 7 (๐‘ฃ = ๐‘Ž โ†’ (๐‘ง = (๐‘ฃ ยท ๐‘) โ†” ๐‘ง = (๐‘Ž ยท ๐‘)))
43rexbidv 3176 . . . . . 6 (๐‘ฃ = ๐‘Ž โ†’ (โˆƒ๐‘ โˆˆ ๐ต ๐‘ง = (๐‘ฃ ยท ๐‘) โ†” โˆƒ๐‘ โˆˆ ๐ต ๐‘ง = (๐‘Ž ยท ๐‘)))
54cbvrexvw 3233 . . . . 5 (โˆƒ๐‘ฃ โˆˆ ๐ด โˆƒ๐‘ โˆˆ ๐ต ๐‘ง = (๐‘ฃ ยท ๐‘) โ†” โˆƒ๐‘Ž โˆˆ ๐ด โˆƒ๐‘ โˆˆ ๐ต ๐‘ง = (๐‘Ž ยท ๐‘))
6 eqeq1 2734 . . . . . 6 (๐‘ง = ๐‘ค โ†’ (๐‘ง = (๐‘Ž ยท ๐‘) โ†” ๐‘ค = (๐‘Ž ยท ๐‘)))
762rexbidv 3217 . . . . 5 (๐‘ง = ๐‘ค โ†’ (โˆƒ๐‘Ž โˆˆ ๐ด โˆƒ๐‘ โˆˆ ๐ต ๐‘ง = (๐‘Ž ยท ๐‘) โ†” โˆƒ๐‘Ž โˆˆ ๐ด โˆƒ๐‘ โˆˆ ๐ต ๐‘ค = (๐‘Ž ยท ๐‘)))
85, 7bitrid 282 . . . 4 (๐‘ง = ๐‘ค โ†’ (โˆƒ๐‘ฃ โˆˆ ๐ด โˆƒ๐‘ โˆˆ ๐ต ๐‘ง = (๐‘ฃ ยท ๐‘) โ†” โˆƒ๐‘Ž โˆˆ ๐ด โˆƒ๐‘ โˆˆ ๐ต ๐‘ค = (๐‘Ž ยท ๐‘)))
9 supmul.1 . . . 4 ๐ถ = {๐‘ง โˆฃ โˆƒ๐‘ฃ โˆˆ ๐ด โˆƒ๐‘ โˆˆ ๐ต ๐‘ง = (๐‘ฃ ยท ๐‘)}
101, 8, 9elab2 3671 . . 3 (๐‘ค โˆˆ ๐ถ โ†” โˆƒ๐‘Ž โˆˆ ๐ด โˆƒ๐‘ โˆˆ ๐ต ๐‘ค = (๐‘Ž ยท ๐‘))
11 supmul.2 . . . . . . . . . . 11 (๐œ‘ โ†” ((โˆ€๐‘ฅ โˆˆ ๐ด 0 โ‰ค ๐‘ฅ โˆง โˆ€๐‘ฅ โˆˆ ๐ต 0 โ‰ค ๐‘ฅ) โˆง (๐ด โІ โ„ โˆง ๐ด โ‰  โˆ… โˆง โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐ด ๐‘ฆ โ‰ค ๐‘ฅ) โˆง (๐ต โІ โ„ โˆง ๐ต โ‰  โˆ… โˆง โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐ต ๐‘ฆ โ‰ค ๐‘ฅ)))
1211simp2bi 1144 . . . . . . . . . 10 (๐œ‘ โ†’ (๐ด โІ โ„ โˆง ๐ด โ‰  โˆ… โˆง โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐ด ๐‘ฆ โ‰ค ๐‘ฅ))
1312simp1d 1140 . . . . . . . . 9 (๐œ‘ โ†’ ๐ด โІ โ„)
1413sselda 3981 . . . . . . . 8 ((๐œ‘ โˆง ๐‘Ž โˆˆ ๐ด) โ†’ ๐‘Ž โˆˆ โ„)
1514adantrr 713 . . . . . . 7 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐ด โˆง ๐‘ โˆˆ ๐ต)) โ†’ ๐‘Ž โˆˆ โ„)
16 suprcl 12178 . . . . . . . . 9 ((๐ด โІ โ„ โˆง ๐ด โ‰  โˆ… โˆง โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐ด ๐‘ฆ โ‰ค ๐‘ฅ) โ†’ sup(๐ด, โ„, < ) โˆˆ โ„)
1712, 16syl 17 . . . . . . . 8 (๐œ‘ โ†’ sup(๐ด, โ„, < ) โˆˆ โ„)
1817adantr 479 . . . . . . 7 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐ด โˆง ๐‘ โˆˆ ๐ต)) โ†’ sup(๐ด, โ„, < ) โˆˆ โ„)
1911simp3bi 1145 . . . . . . . . . 10 (๐œ‘ โ†’ (๐ต โІ โ„ โˆง ๐ต โ‰  โˆ… โˆง โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐ต ๐‘ฆ โ‰ค ๐‘ฅ))
2019simp1d 1140 . . . . . . . . 9 (๐œ‘ โ†’ ๐ต โІ โ„)
2120sselda 3981 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ โˆˆ ๐ต) โ†’ ๐‘ โˆˆ โ„)
2221adantrl 712 . . . . . . 7 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐ด โˆง ๐‘ โˆˆ ๐ต)) โ†’ ๐‘ โˆˆ โ„)
23 suprcl 12178 . . . . . . . . 9 ((๐ต โІ โ„ โˆง ๐ต โ‰  โˆ… โˆง โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐ต ๐‘ฆ โ‰ค ๐‘ฅ) โ†’ sup(๐ต, โ„, < ) โˆˆ โ„)
2419, 23syl 17 . . . . . . . 8 (๐œ‘ โ†’ sup(๐ต, โ„, < ) โˆˆ โ„)
2524adantr 479 . . . . . . 7 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐ด โˆง ๐‘ โˆˆ ๐ต)) โ†’ sup(๐ต, โ„, < ) โˆˆ โ„)
26 simp1l 1195 . . . . . . . . . . 11 (((โˆ€๐‘ฅ โˆˆ ๐ด 0 โ‰ค ๐‘ฅ โˆง โˆ€๐‘ฅ โˆˆ ๐ต 0 โ‰ค ๐‘ฅ) โˆง (๐ด โІ โ„ โˆง ๐ด โ‰  โˆ… โˆง โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐ด ๐‘ฆ โ‰ค ๐‘ฅ) โˆง (๐ต โІ โ„ โˆง ๐ต โ‰  โˆ… โˆง โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐ต ๐‘ฆ โ‰ค ๐‘ฅ)) โ†’ โˆ€๐‘ฅ โˆˆ ๐ด 0 โ‰ค ๐‘ฅ)
2711, 26sylbi 216 . . . . . . . . . 10 (๐œ‘ โ†’ โˆ€๐‘ฅ โˆˆ ๐ด 0 โ‰ค ๐‘ฅ)
28 breq2 5151 . . . . . . . . . . 11 (๐‘ฅ = ๐‘Ž โ†’ (0 โ‰ค ๐‘ฅ โ†” 0 โ‰ค ๐‘Ž))
2928rspccv 3608 . . . . . . . . . 10 (โˆ€๐‘ฅ โˆˆ ๐ด 0 โ‰ค ๐‘ฅ โ†’ (๐‘Ž โˆˆ ๐ด โ†’ 0 โ‰ค ๐‘Ž))
3027, 29syl 17 . . . . . . . . 9 (๐œ‘ โ†’ (๐‘Ž โˆˆ ๐ด โ†’ 0 โ‰ค ๐‘Ž))
3130imp 405 . . . . . . . 8 ((๐œ‘ โˆง ๐‘Ž โˆˆ ๐ด) โ†’ 0 โ‰ค ๐‘Ž)
3231adantrr 713 . . . . . . 7 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐ด โˆง ๐‘ โˆˆ ๐ต)) โ†’ 0 โ‰ค ๐‘Ž)
33 simp1r 1196 . . . . . . . . . . 11 (((โˆ€๐‘ฅ โˆˆ ๐ด 0 โ‰ค ๐‘ฅ โˆง โˆ€๐‘ฅ โˆˆ ๐ต 0 โ‰ค ๐‘ฅ) โˆง (๐ด โІ โ„ โˆง ๐ด โ‰  โˆ… โˆง โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐ด ๐‘ฆ โ‰ค ๐‘ฅ) โˆง (๐ต โІ โ„ โˆง ๐ต โ‰  โˆ… โˆง โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐ต ๐‘ฆ โ‰ค ๐‘ฅ)) โ†’ โˆ€๐‘ฅ โˆˆ ๐ต 0 โ‰ค ๐‘ฅ)
3411, 33sylbi 216 . . . . . . . . . 10 (๐œ‘ โ†’ โˆ€๐‘ฅ โˆˆ ๐ต 0 โ‰ค ๐‘ฅ)
35 breq2 5151 . . . . . . . . . . 11 (๐‘ฅ = ๐‘ โ†’ (0 โ‰ค ๐‘ฅ โ†” 0 โ‰ค ๐‘))
3635rspccv 3608 . . . . . . . . . 10 (โˆ€๐‘ฅ โˆˆ ๐ต 0 โ‰ค ๐‘ฅ โ†’ (๐‘ โˆˆ ๐ต โ†’ 0 โ‰ค ๐‘))
3734, 36syl 17 . . . . . . . . 9 (๐œ‘ โ†’ (๐‘ โˆˆ ๐ต โ†’ 0 โ‰ค ๐‘))
3837imp 405 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ โˆˆ ๐ต) โ†’ 0 โ‰ค ๐‘)
3938adantrl 712 . . . . . . 7 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐ด โˆง ๐‘ โˆˆ ๐ต)) โ†’ 0 โ‰ค ๐‘)
40 suprub 12179 . . . . . . . . 9 (((๐ด โІ โ„ โˆง ๐ด โ‰  โˆ… โˆง โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐ด ๐‘ฆ โ‰ค ๐‘ฅ) โˆง ๐‘Ž โˆˆ ๐ด) โ†’ ๐‘Ž โ‰ค sup(๐ด, โ„, < ))
4112, 40sylan 578 . . . . . . . 8 ((๐œ‘ โˆง ๐‘Ž โˆˆ ๐ด) โ†’ ๐‘Ž โ‰ค sup(๐ด, โ„, < ))
4241adantrr 713 . . . . . . 7 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐ด โˆง ๐‘ โˆˆ ๐ต)) โ†’ ๐‘Ž โ‰ค sup(๐ด, โ„, < ))
43 suprub 12179 . . . . . . . . 9 (((๐ต โІ โ„ โˆง ๐ต โ‰  โˆ… โˆง โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐ต ๐‘ฆ โ‰ค ๐‘ฅ) โˆง ๐‘ โˆˆ ๐ต) โ†’ ๐‘ โ‰ค sup(๐ต, โ„, < ))
4419, 43sylan 578 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ โˆˆ ๐ต) โ†’ ๐‘ โ‰ค sup(๐ต, โ„, < ))
4544adantrl 712 . . . . . . 7 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐ด โˆง ๐‘ โˆˆ ๐ต)) โ†’ ๐‘ โ‰ค sup(๐ต, โ„, < ))
4615, 18, 22, 25, 32, 39, 42, 45lemul12ad 12160 . . . . . 6 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐ด โˆง ๐‘ โˆˆ ๐ต)) โ†’ (๐‘Ž ยท ๐‘) โ‰ค (sup(๐ด, โ„, < ) ยท sup(๐ต, โ„, < )))
4746ex 411 . . . . 5 (๐œ‘ โ†’ ((๐‘Ž โˆˆ ๐ด โˆง ๐‘ โˆˆ ๐ต) โ†’ (๐‘Ž ยท ๐‘) โ‰ค (sup(๐ด, โ„, < ) ยท sup(๐ต, โ„, < ))))
48 breq1 5150 . . . . . 6 (๐‘ค = (๐‘Ž ยท ๐‘) โ†’ (๐‘ค โ‰ค (sup(๐ด, โ„, < ) ยท sup(๐ต, โ„, < )) โ†” (๐‘Ž ยท ๐‘) โ‰ค (sup(๐ด, โ„, < ) ยท sup(๐ต, โ„, < ))))
4948biimprcd 249 . . . . 5 ((๐‘Ž ยท ๐‘) โ‰ค (sup(๐ด, โ„, < ) ยท sup(๐ต, โ„, < )) โ†’ (๐‘ค = (๐‘Ž ยท ๐‘) โ†’ ๐‘ค โ‰ค (sup(๐ด, โ„, < ) ยท sup(๐ต, โ„, < ))))
5047, 49syl6 35 . . . 4 (๐œ‘ โ†’ ((๐‘Ž โˆˆ ๐ด โˆง ๐‘ โˆˆ ๐ต) โ†’ (๐‘ค = (๐‘Ž ยท ๐‘) โ†’ ๐‘ค โ‰ค (sup(๐ด, โ„, < ) ยท sup(๐ต, โ„, < )))))
5150rexlimdvv 3208 . . 3 (๐œ‘ โ†’ (โˆƒ๐‘Ž โˆˆ ๐ด โˆƒ๐‘ โˆˆ ๐ต ๐‘ค = (๐‘Ž ยท ๐‘) โ†’ ๐‘ค โ‰ค (sup(๐ด, โ„, < ) ยท sup(๐ต, โ„, < ))))
5210, 51biimtrid 241 . 2 (๐œ‘ โ†’ (๐‘ค โˆˆ ๐ถ โ†’ ๐‘ค โ‰ค (sup(๐ด, โ„, < ) ยท sup(๐ต, โ„, < ))))
5352ralrimiv 3143 1 (๐œ‘ โ†’ โˆ€๐‘ค โˆˆ ๐ถ ๐‘ค โ‰ค (sup(๐ด, โ„, < ) ยท sup(๐ต, โ„, < )))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 394   โˆง w3a 1085   = wceq 1539   โˆˆ wcel 2104  {cab 2707   โ‰  wne 2938  โˆ€wral 3059  โˆƒwrex 3068   โІ wss 3947  โˆ…c0 4321   class class class wbr 5147  (class class class)co 7411  supcsup 9437  โ„cr 11111  0cc0 11112   ยท cmul 11117   < clt 11252   โ‰ค cle 11253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451
This theorem is referenced by:  supmullem2  12189  supmul  12190
  Copyright terms: Public domain W3C validator