![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldprdi | Structured version Visualization version GIF version |
Description: The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
Ref | Expression |
---|---|
eldprdi.0 | ⊢ 0 = (0g‘𝐺) |
eldprdi.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
eldprdi.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
eldprdi.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
eldprdi.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
Ref | Expression |
---|---|
eldprdi | ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldprdi.1 | . 2 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
2 | eldprdi.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
3 | eqid 2732 | . . 3 ⊢ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐹) | |
4 | oveq2 7419 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝐺 Σg 𝑓) = (𝐺 Σg 𝐹)) | |
5 | 4 | rspceeqv 3633 | . . 3 ⊢ ((𝐹 ∈ 𝑊 ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐹)) → ∃𝑓 ∈ 𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) |
6 | 2, 3, 5 | sylancl 586 | . 2 ⊢ (𝜑 → ∃𝑓 ∈ 𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) |
7 | eldprdi.2 | . . 3 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
8 | eldprdi.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
9 | eldprdi.w | . . . 4 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
10 | 8, 9 | eldprd 19876 | . . 3 ⊢ (dom 𝑆 = 𝐼 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))) |
11 | 7, 10 | syl 17 | . 2 ⊢ (𝜑 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))) |
12 | 1, 6, 11 | mpbir2and 711 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 {crab 3432 class class class wbr 5148 dom cdm 5676 ‘cfv 6543 (class class class)co 7411 Xcixp 8893 finSupp cfsupp 9363 0gc0g 17387 Σg cgsu 17388 DProd cdprd 19865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-ixp 8894 df-dprd 19867 |
This theorem is referenced by: dprdfsub 19893 dprdf11 19895 dprdsubg 19896 dprdub 19897 dpjidcl 19930 |
Copyright terms: Public domain | W3C validator |