![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldprdi | Structured version Visualization version GIF version |
Description: The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
Ref | Expression |
---|---|
eldprdi.0 | ⊢ 0 = (0g‘𝐺) |
eldprdi.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
eldprdi.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
eldprdi.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
eldprdi.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
Ref | Expression |
---|---|
eldprdi | ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldprdi.1 | . 2 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
2 | eldprdi.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
3 | eqid 2740 | . . 3 ⊢ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐹) | |
4 | oveq2 7456 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝐺 Σg 𝑓) = (𝐺 Σg 𝐹)) | |
5 | 4 | rspceeqv 3658 | . . 3 ⊢ ((𝐹 ∈ 𝑊 ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐹)) → ∃𝑓 ∈ 𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) |
6 | 2, 3, 5 | sylancl 585 | . 2 ⊢ (𝜑 → ∃𝑓 ∈ 𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) |
7 | eldprdi.2 | . . 3 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
8 | eldprdi.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
9 | eldprdi.w | . . . 4 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
10 | 8, 9 | eldprd 20048 | . . 3 ⊢ (dom 𝑆 = 𝐼 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))) |
11 | 7, 10 | syl 17 | . 2 ⊢ (𝜑 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))) |
12 | 1, 6, 11 | mpbir2and 712 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {crab 3443 class class class wbr 5166 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 Xcixp 8955 finSupp cfsupp 9431 0gc0g 17499 Σg cgsu 17500 DProd cdprd 20037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-ixp 8956 df-dprd 20039 |
This theorem is referenced by: dprdfsub 20065 dprdf11 20067 dprdsubg 20068 dprdub 20069 dpjidcl 20102 |
Copyright terms: Public domain | W3C validator |