| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldprdi | Structured version Visualization version GIF version | ||
| Description: The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| Ref | Expression |
|---|---|
| eldprdi.0 | ⊢ 0 = (0g‘𝐺) |
| eldprdi.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| eldprdi.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| eldprdi.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| eldprdi.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| eldprdi | ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.1 | . 2 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 2 | eldprdi.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
| 3 | eqid 2730 | . . 3 ⊢ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐹) | |
| 4 | oveq2 7397 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝐺 Σg 𝑓) = (𝐺 Σg 𝐹)) | |
| 5 | 4 | rspceeqv 3614 | . . 3 ⊢ ((𝐹 ∈ 𝑊 ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐹)) → ∃𝑓 ∈ 𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) |
| 6 | 2, 3, 5 | sylancl 586 | . 2 ⊢ (𝜑 → ∃𝑓 ∈ 𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) |
| 7 | eldprdi.2 | . . 3 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 8 | eldprdi.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 9 | eldprdi.w | . . . 4 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
| 10 | 8, 9 | eldprd 19942 | . . 3 ⊢ (dom 𝑆 = 𝐼 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))) |
| 11 | 7, 10 | syl 17 | . 2 ⊢ (𝜑 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))) |
| 12 | 1, 6, 11 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 {crab 3408 class class class wbr 5109 dom cdm 5640 ‘cfv 6513 (class class class)co 7389 Xcixp 8872 finSupp cfsupp 9318 0gc0g 17408 Σg cgsu 17409 DProd cdprd 19931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-ixp 8873 df-dprd 19933 |
| This theorem is referenced by: dprdfsub 19959 dprdf11 19961 dprdsubg 19962 dprdub 19963 dpjidcl 19996 |
| Copyright terms: Public domain | W3C validator |