MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldprdi Structured version   Visualization version   GIF version

Theorem eldprdi 20062
Description: The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
Assertion
Ref Expression
eldprdi (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆))
Distinct variable groups:   ,𝐹   ,𝑖,𝐺   ,𝐼,𝑖   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem eldprdi
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eldprdi.1 . 2 (𝜑𝐺dom DProd 𝑆)
2 eldprdi.3 . . 3 (𝜑𝐹𝑊)
3 eqid 2740 . . 3 (𝐺 Σg 𝐹) = (𝐺 Σg 𝐹)
4 oveq2 7456 . . . 4 (𝑓 = 𝐹 → (𝐺 Σg 𝑓) = (𝐺 Σg 𝐹))
54rspceeqv 3658 . . 3 ((𝐹𝑊 ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐹)) → ∃𝑓𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
62, 3, 5sylancl 585 . 2 (𝜑 → ∃𝑓𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
7 eldprdi.2 . . 3 (𝜑 → dom 𝑆 = 𝐼)
8 eldprdi.0 . . . 4 0 = (0g𝐺)
9 eldprdi.w . . . 4 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
108, 9eldprd 20048 . . 3 (dom 𝑆 = 𝐼 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
117, 10syl 17 . 2 (𝜑 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
121, 6, 11mpbir2and 712 1 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443   class class class wbr 5166  dom cdm 5700  cfv 6573  (class class class)co 7448  Xcixp 8955   finSupp cfsupp 9431  0gc0g 17499   Σg cgsu 17500   DProd cdprd 20037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-ixp 8956  df-dprd 20039
This theorem is referenced by:  dprdfsub  20065  dprdf11  20067  dprdsubg  20068  dprdub  20069  dpjidcl  20102
  Copyright terms: Public domain W3C validator