Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eldprdi | Structured version Visualization version GIF version |
Description: The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
Ref | Expression |
---|---|
eldprdi.0 | ⊢ 0 = (0g‘𝐺) |
eldprdi.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
eldprdi.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
eldprdi.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
eldprdi.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
Ref | Expression |
---|---|
eldprdi | ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldprdi.1 | . 2 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
2 | eldprdi.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
3 | eqid 2738 | . . 3 ⊢ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐹) | |
4 | oveq2 7263 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝐺 Σg 𝑓) = (𝐺 Σg 𝐹)) | |
5 | 4 | rspceeqv 3567 | . . 3 ⊢ ((𝐹 ∈ 𝑊 ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐹)) → ∃𝑓 ∈ 𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) |
6 | 2, 3, 5 | sylancl 585 | . 2 ⊢ (𝜑 → ∃𝑓 ∈ 𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) |
7 | eldprdi.2 | . . 3 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
8 | eldprdi.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
9 | eldprdi.w | . . . 4 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
10 | 8, 9 | eldprd 19522 | . . 3 ⊢ (dom 𝑆 = 𝐼 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))) |
11 | 7, 10 | syl 17 | . 2 ⊢ (𝜑 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))) |
12 | 1, 6, 11 | mpbir2and 709 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 {crab 3067 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 Xcixp 8643 finSupp cfsupp 9058 0gc0g 17067 Σg cgsu 17068 DProd cdprd 19511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-ixp 8644 df-dprd 19513 |
This theorem is referenced by: dprdfsub 19539 dprdf11 19541 dprdsubg 19542 dprdub 19543 dpjidcl 19576 |
Copyright terms: Public domain | W3C validator |