MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldprdi Structured version   Visualization version   GIF version

Theorem eldprdi 19811
Description: The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
Assertion
Ref Expression
eldprdi (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆))
Distinct variable groups:   ,𝐹   ,𝑖,𝐺   ,𝐼,𝑖   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem eldprdi
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eldprdi.1 . 2 (𝜑𝐺dom DProd 𝑆)
2 eldprdi.3 . . 3 (𝜑𝐹𝑊)
3 eqid 2731 . . 3 (𝐺 Σg 𝐹) = (𝐺 Σg 𝐹)
4 oveq2 7370 . . . 4 (𝑓 = 𝐹 → (𝐺 Σg 𝑓) = (𝐺 Σg 𝐹))
54rspceeqv 3598 . . 3 ((𝐹𝑊 ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐹)) → ∃𝑓𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
62, 3, 5sylancl 586 . 2 (𝜑 → ∃𝑓𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
7 eldprdi.2 . . 3 (𝜑 → dom 𝑆 = 𝐼)
8 eldprdi.0 . . . 4 0 = (0g𝐺)
9 eldprdi.w . . . 4 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
108, 9eldprd 19797 . . 3 (dom 𝑆 = 𝐼 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
117, 10syl 17 . 2 (𝜑 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
121, 6, 11mpbir2and 711 1 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3069  {crab 3405   class class class wbr 5110  dom cdm 5638  cfv 6501  (class class class)co 7362  Xcixp 8842   finSupp cfsupp 9312  0gc0g 17335   Σg cgsu 17336   DProd cdprd 19786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-1st 7926  df-2nd 7927  df-ixp 8843  df-dprd 19788
This theorem is referenced by:  dprdfsub  19814  dprdf11  19816  dprdsubg  19817  dprdub  19818  dpjidcl  19851
  Copyright terms: Public domain W3C validator