| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldprd | Structured version Visualization version GIF version | ||
| Description: A class 𝐴 is an internal direct product iff it is the (group) sum of an infinite, but finitely supported cartesian product of subgroups (which mutually commute and have trivial intersections). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| Ref | Expression |
|---|---|
| dprdval.0 | ⊢ 0 = (0g‘𝐺) |
| dprdval.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| Ref | Expression |
|---|---|
| eldprd | ⊢ (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6856 | . . . . 5 ⊢ (𝐴 ∈ ( DProd ‘〈𝐺, 𝑆〉) → 〈𝐺, 𝑆〉 ∈ dom DProd ) | |
| 2 | df-ov 7349 | . . . . 5 ⊢ (𝐺 DProd 𝑆) = ( DProd ‘〈𝐺, 𝑆〉) | |
| 3 | 1, 2 | eleq2s 2849 | . . . 4 ⊢ (𝐴 ∈ (𝐺 DProd 𝑆) → 〈𝐺, 𝑆〉 ∈ dom DProd ) |
| 4 | df-br 5090 | . . . 4 ⊢ (𝐺dom DProd 𝑆 ↔ 〈𝐺, 𝑆〉 ∈ dom DProd ) | |
| 5 | 3, 4 | sylibr 234 | . . 3 ⊢ (𝐴 ∈ (𝐺 DProd 𝑆) → 𝐺dom DProd 𝑆) |
| 6 | 5 | pm4.71ri 560 | . 2 ⊢ (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ 𝐴 ∈ (𝐺 DProd 𝑆))) |
| 7 | dprdval.0 | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
| 8 | dprdval.w | . . . . . . 7 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
| 9 | 7, 8 | dprdval 19917 | . . . . . 6 ⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓))) |
| 10 | 9 | eleq2d 2817 | . . . . 5 ⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ 𝐴 ∈ ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓)))) |
| 11 | eqid 2731 | . . . . . 6 ⊢ (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓)) = (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓)) | |
| 12 | ovex 7379 | . . . . . 6 ⊢ (𝐺 Σg 𝑓) ∈ V | |
| 13 | 11, 12 | elrnmpti 5901 | . . . . 5 ⊢ (𝐴 ∈ ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓)) ↔ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)) |
| 14 | 10, 13 | bitrdi 287 | . . . 4 ⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓))) |
| 15 | 14 | ancoms 458 | . . 3 ⊢ ((dom 𝑆 = 𝐼 ∧ 𝐺dom DProd 𝑆) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓))) |
| 16 | 15 | pm5.32da 579 | . 2 ⊢ (dom 𝑆 = 𝐼 → ((𝐺dom DProd 𝑆 ∧ 𝐴 ∈ (𝐺 DProd 𝑆)) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)))) |
| 17 | 6, 16 | bitrid 283 | 1 ⊢ (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 〈cop 4579 class class class wbr 5089 ↦ cmpt 5170 dom cdm 5614 ran crn 5615 ‘cfv 6481 (class class class)co 7346 Xcixp 8821 finSupp cfsupp 9245 0gc0g 17343 Σg cgsu 17344 DProd cdprd 19907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-ixp 8822 df-dprd 19909 |
| This theorem is referenced by: dprdssv 19930 eldprdi 19932 dprdsubg 19938 dprdss 19943 dmdprdsplitlem 19951 dprddisj2 19953 dpjidcl 19972 |
| Copyright terms: Public domain | W3C validator |