MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldprd Structured version   Visualization version   GIF version

Theorem eldprd 19918
Description: A class 𝐴 is an internal direct product iff it is the (group) sum of an infinite, but finitely supported cartesian product of subgroups (which mutually commute and have trivial intersections). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdval.0 0 = (0g𝐺)
dprdval.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
Assertion
Ref Expression
eldprd (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
Distinct variable groups:   𝑓,,𝑖   𝐴,𝑓   𝑓,𝐼,,𝑖   𝑆,𝑓,,𝑖   𝑓,𝐺,,𝑖
Allowed substitution hints:   𝐴(,𝑖)   𝑊(𝑓,,𝑖)   0 (𝑓,,𝑖)

Proof of Theorem eldprd
StepHypRef Expression
1 elfvdm 6856 . . . . 5 (𝐴 ∈ ( DProd ‘⟨𝐺, 𝑆⟩) → ⟨𝐺, 𝑆⟩ ∈ dom DProd )
2 df-ov 7349 . . . . 5 (𝐺 DProd 𝑆) = ( DProd ‘⟨𝐺, 𝑆⟩)
31, 2eleq2s 2849 . . . 4 (𝐴 ∈ (𝐺 DProd 𝑆) → ⟨𝐺, 𝑆⟩ ∈ dom DProd )
4 df-br 5090 . . . 4 (𝐺dom DProd 𝑆 ↔ ⟨𝐺, 𝑆⟩ ∈ dom DProd )
53, 4sylibr 234 . . 3 (𝐴 ∈ (𝐺 DProd 𝑆) → 𝐺dom DProd 𝑆)
65pm4.71ri 560 . 2 (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆𝐴 ∈ (𝐺 DProd 𝑆)))
7 dprdval.0 . . . . . . 7 0 = (0g𝐺)
8 dprdval.w . . . . . . 7 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
97, 8dprdval 19917 . . . . . 6 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))
109eleq2d 2817 . . . . 5 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ 𝐴 ∈ ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓))))
11 eqid 2731 . . . . . 6 (𝑓𝑊 ↦ (𝐺 Σg 𝑓)) = (𝑓𝑊 ↦ (𝐺 Σg 𝑓))
12 ovex 7379 . . . . . 6 (𝐺 Σg 𝑓) ∈ V
1311, 12elrnmpti 5901 . . . . 5 (𝐴 ∈ ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)) ↔ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))
1410, 13bitrdi 287 . . . 4 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓)))
1514ancoms 458 . . 3 ((dom 𝑆 = 𝐼𝐺dom DProd 𝑆) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓)))
1615pm5.32da 579 . 2 (dom 𝑆 = 𝐼 → ((𝐺dom DProd 𝑆𝐴 ∈ (𝐺 DProd 𝑆)) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
176, 16bitrid 283 1 (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  cop 4579   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  cfv 6481  (class class class)co 7346  Xcixp 8821   finSupp cfsupp 9245  0gc0g 17343   Σg cgsu 17344   DProd cdprd 19907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-ixp 8822  df-dprd 19909
This theorem is referenced by:  dprdssv  19930  eldprdi  19932  dprdsubg  19938  dprdss  19943  dmdprdsplitlem  19951  dprddisj2  19953  dpjidcl  19972
  Copyright terms: Public domain W3C validator