MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldprd Structured version   Visualization version   GIF version

Theorem eldprd 20025
Description: A class 𝐴 is an internal direct product iff it is the (group) sum of an infinite, but finitely supported cartesian product of subgroups (which mutually commute and have trivial intersections). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdval.0 0 = (0g𝐺)
dprdval.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
Assertion
Ref Expression
eldprd (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
Distinct variable groups:   𝑓,,𝑖   𝐴,𝑓   𝑓,𝐼,,𝑖   𝑆,𝑓,,𝑖   𝑓,𝐺,,𝑖
Allowed substitution hints:   𝐴(,𝑖)   𝑊(𝑓,,𝑖)   0 (𝑓,,𝑖)

Proof of Theorem eldprd
StepHypRef Expression
1 elfvdm 6942 . . . . 5 (𝐴 ∈ ( DProd ‘⟨𝐺, 𝑆⟩) → ⟨𝐺, 𝑆⟩ ∈ dom DProd )
2 df-ov 7435 . . . . 5 (𝐺 DProd 𝑆) = ( DProd ‘⟨𝐺, 𝑆⟩)
31, 2eleq2s 2858 . . . 4 (𝐴 ∈ (𝐺 DProd 𝑆) → ⟨𝐺, 𝑆⟩ ∈ dom DProd )
4 df-br 5143 . . . 4 (𝐺dom DProd 𝑆 ↔ ⟨𝐺, 𝑆⟩ ∈ dom DProd )
53, 4sylibr 234 . . 3 (𝐴 ∈ (𝐺 DProd 𝑆) → 𝐺dom DProd 𝑆)
65pm4.71ri 560 . 2 (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆𝐴 ∈ (𝐺 DProd 𝑆)))
7 dprdval.0 . . . . . . 7 0 = (0g𝐺)
8 dprdval.w . . . . . . 7 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
97, 8dprdval 20024 . . . . . 6 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))
109eleq2d 2826 . . . . 5 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ 𝐴 ∈ ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓))))
11 eqid 2736 . . . . . 6 (𝑓𝑊 ↦ (𝐺 Σg 𝑓)) = (𝑓𝑊 ↦ (𝐺 Σg 𝑓))
12 ovex 7465 . . . . . 6 (𝐺 Σg 𝑓) ∈ V
1311, 12elrnmpti 5972 . . . . 5 (𝐴 ∈ ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)) ↔ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))
1410, 13bitrdi 287 . . . 4 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓)))
1514ancoms 458 . . 3 ((dom 𝑆 = 𝐼𝐺dom DProd 𝑆) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓)))
1615pm5.32da 579 . 2 (dom 𝑆 = 𝐼 → ((𝐺dom DProd 𝑆𝐴 ∈ (𝐺 DProd 𝑆)) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
176, 16bitrid 283 1 (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3069  {crab 3435  cop 4631   class class class wbr 5142  cmpt 5224  dom cdm 5684  ran crn 5685  cfv 6560  (class class class)co 7432  Xcixp 8938   finSupp cfsupp 9402  0gc0g 17485   Σg cgsu 17486   DProd cdprd 20014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-ixp 8939  df-dprd 20016
This theorem is referenced by:  dprdssv  20037  eldprdi  20039  dprdsubg  20045  dprdss  20050  dmdprdsplitlem  20058  dprddisj2  20060  dpjidcl  20079
  Copyright terms: Public domain W3C validator