MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldprd Structured version   Visualization version   GIF version

Theorem eldprd 19702
Description: A class 𝐴 is an internal direct product iff it is the (group) sum of an infinite, but finitely supported cartesian product of subgroups (which mutually commute and have trivial intersections). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdval.0 0 = (0g𝐺)
dprdval.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
Assertion
Ref Expression
eldprd (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
Distinct variable groups:   𝑓,,𝑖   𝐴,𝑓   𝑓,𝐼,,𝑖   𝑆,𝑓,,𝑖   𝑓,𝐺,,𝑖
Allowed substitution hints:   𝐴(,𝑖)   𝑊(𝑓,,𝑖)   0 (𝑓,,𝑖)

Proof of Theorem eldprd
StepHypRef Expression
1 elfvdm 6862 . . . . 5 (𝐴 ∈ ( DProd ‘⟨𝐺, 𝑆⟩) → ⟨𝐺, 𝑆⟩ ∈ dom DProd )
2 df-ov 7340 . . . . 5 (𝐺 DProd 𝑆) = ( DProd ‘⟨𝐺, 𝑆⟩)
31, 2eleq2s 2855 . . . 4 (𝐴 ∈ (𝐺 DProd 𝑆) → ⟨𝐺, 𝑆⟩ ∈ dom DProd )
4 df-br 5093 . . . 4 (𝐺dom DProd 𝑆 ↔ ⟨𝐺, 𝑆⟩ ∈ dom DProd )
53, 4sylibr 233 . . 3 (𝐴 ∈ (𝐺 DProd 𝑆) → 𝐺dom DProd 𝑆)
65pm4.71ri 561 . 2 (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆𝐴 ∈ (𝐺 DProd 𝑆)))
7 dprdval.0 . . . . . . 7 0 = (0g𝐺)
8 dprdval.w . . . . . . 7 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
97, 8dprdval 19701 . . . . . 6 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))
109eleq2d 2822 . . . . 5 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ 𝐴 ∈ ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓))))
11 eqid 2736 . . . . . 6 (𝑓𝑊 ↦ (𝐺 Σg 𝑓)) = (𝑓𝑊 ↦ (𝐺 Σg 𝑓))
12 ovex 7370 . . . . . 6 (𝐺 Σg 𝑓) ∈ V
1311, 12elrnmpti 5901 . . . . 5 (𝐴 ∈ ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)) ↔ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))
1410, 13bitrdi 286 . . . 4 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓)))
1514ancoms 459 . . 3 ((dom 𝑆 = 𝐼𝐺dom DProd 𝑆) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓)))
1615pm5.32da 579 . 2 (dom 𝑆 = 𝐼 → ((𝐺dom DProd 𝑆𝐴 ∈ (𝐺 DProd 𝑆)) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
176, 16bitrid 282 1 (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wrex 3070  {crab 3403  cop 4579   class class class wbr 5092  cmpt 5175  dom cdm 5620  ran crn 5621  cfv 6479  (class class class)co 7337  Xcixp 8756   finSupp cfsupp 9226  0gc0g 17247   Σg cgsu 17248   DProd cdprd 19691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-1st 7899  df-2nd 7900  df-ixp 8757  df-dprd 19693
This theorem is referenced by:  dprdssv  19714  eldprdi  19716  dprdsubg  19722  dprdss  19727  dmdprdsplitlem  19735  dprddisj2  19737  dpjidcl  19756
  Copyright terms: Public domain W3C validator