![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldprd | Structured version Visualization version GIF version |
Description: A class 𝐴 is an internal direct product iff it is the (group) sum of an infinite, but finitely supported cartesian product of subgroups (which mutually commute and have trivial intersections). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
Ref | Expression |
---|---|
dprdval.0 | ⊢ 0 = (0g‘𝐺) |
dprdval.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
Ref | Expression |
---|---|
eldprd | ⊢ (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6938 | . . . . 5 ⊢ (𝐴 ∈ ( DProd ‘〈𝐺, 𝑆〉) → 〈𝐺, 𝑆〉 ∈ dom DProd ) | |
2 | df-ov 7427 | . . . . 5 ⊢ (𝐺 DProd 𝑆) = ( DProd ‘〈𝐺, 𝑆〉) | |
3 | 1, 2 | eleq2s 2844 | . . . 4 ⊢ (𝐴 ∈ (𝐺 DProd 𝑆) → 〈𝐺, 𝑆〉 ∈ dom DProd ) |
4 | df-br 5154 | . . . 4 ⊢ (𝐺dom DProd 𝑆 ↔ 〈𝐺, 𝑆〉 ∈ dom DProd ) | |
5 | 3, 4 | sylibr 233 | . . 3 ⊢ (𝐴 ∈ (𝐺 DProd 𝑆) → 𝐺dom DProd 𝑆) |
6 | 5 | pm4.71ri 559 | . 2 ⊢ (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ 𝐴 ∈ (𝐺 DProd 𝑆))) |
7 | dprdval.0 | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
8 | dprdval.w | . . . . . . 7 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
9 | 7, 8 | dprdval 20003 | . . . . . 6 ⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓))) |
10 | 9 | eleq2d 2812 | . . . . 5 ⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ 𝐴 ∈ ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓)))) |
11 | eqid 2726 | . . . . . 6 ⊢ (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓)) = (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓)) | |
12 | ovex 7457 | . . . . . 6 ⊢ (𝐺 Σg 𝑓) ∈ V | |
13 | 11, 12 | elrnmpti 5966 | . . . . 5 ⊢ (𝐴 ∈ ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓)) ↔ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)) |
14 | 10, 13 | bitrdi 286 | . . . 4 ⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓))) |
15 | 14 | ancoms 457 | . . 3 ⊢ ((dom 𝑆 = 𝐼 ∧ 𝐺dom DProd 𝑆) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓))) |
16 | 15 | pm5.32da 577 | . 2 ⊢ (dom 𝑆 = 𝐼 → ((𝐺dom DProd 𝑆 ∧ 𝐴 ∈ (𝐺 DProd 𝑆)) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)))) |
17 | 6, 16 | bitrid 282 | 1 ⊢ (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 {crab 3419 〈cop 4639 class class class wbr 5153 ↦ cmpt 5236 dom cdm 5682 ran crn 5683 ‘cfv 6554 (class class class)co 7424 Xcixp 8926 finSupp cfsupp 9405 0gc0g 17454 Σg cgsu 17455 DProd cdprd 19993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 8003 df-2nd 8004 df-ixp 8927 df-dprd 19995 |
This theorem is referenced by: dprdssv 20016 eldprdi 20018 dprdsubg 20024 dprdss 20029 dmdprdsplitlem 20037 dprddisj2 20039 dpjidcl 20058 |
Copyright terms: Public domain | W3C validator |