| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldprd | Structured version Visualization version GIF version | ||
| Description: A class 𝐴 is an internal direct product iff it is the (group) sum of an infinite, but finitely supported cartesian product of subgroups (which mutually commute and have trivial intersections). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| Ref | Expression |
|---|---|
| dprdval.0 | ⊢ 0 = (0g‘𝐺) |
| dprdval.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| Ref | Expression |
|---|---|
| eldprd | ⊢ (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6877 | . . . . 5 ⊢ (𝐴 ∈ ( DProd ‘〈𝐺, 𝑆〉) → 〈𝐺, 𝑆〉 ∈ dom DProd ) | |
| 2 | df-ov 7372 | . . . . 5 ⊢ (𝐺 DProd 𝑆) = ( DProd ‘〈𝐺, 𝑆〉) | |
| 3 | 1, 2 | eleq2s 2846 | . . . 4 ⊢ (𝐴 ∈ (𝐺 DProd 𝑆) → 〈𝐺, 𝑆〉 ∈ dom DProd ) |
| 4 | df-br 5103 | . . . 4 ⊢ (𝐺dom DProd 𝑆 ↔ 〈𝐺, 𝑆〉 ∈ dom DProd ) | |
| 5 | 3, 4 | sylibr 234 | . . 3 ⊢ (𝐴 ∈ (𝐺 DProd 𝑆) → 𝐺dom DProd 𝑆) |
| 6 | 5 | pm4.71ri 560 | . 2 ⊢ (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ 𝐴 ∈ (𝐺 DProd 𝑆))) |
| 7 | dprdval.0 | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
| 8 | dprdval.w | . . . . . . 7 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
| 9 | 7, 8 | dprdval 19919 | . . . . . 6 ⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓))) |
| 10 | 9 | eleq2d 2814 | . . . . 5 ⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ 𝐴 ∈ ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓)))) |
| 11 | eqid 2729 | . . . . . 6 ⊢ (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓)) = (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓)) | |
| 12 | ovex 7402 | . . . . . 6 ⊢ (𝐺 Σg 𝑓) ∈ V | |
| 13 | 11, 12 | elrnmpti 5915 | . . . . 5 ⊢ (𝐴 ∈ ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓)) ↔ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)) |
| 14 | 10, 13 | bitrdi 287 | . . . 4 ⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓))) |
| 15 | 14 | ancoms 458 | . . 3 ⊢ ((dom 𝑆 = 𝐼 ∧ 𝐺dom DProd 𝑆) → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓))) |
| 16 | 15 | pm5.32da 579 | . 2 ⊢ (dom 𝑆 = 𝐼 → ((𝐺dom DProd 𝑆 ∧ 𝐴 ∈ (𝐺 DProd 𝑆)) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)))) |
| 17 | 6, 16 | bitrid 283 | 1 ⊢ (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3402 〈cop 4591 class class class wbr 5102 ↦ cmpt 5183 dom cdm 5631 ran crn 5632 ‘cfv 6499 (class class class)co 7369 Xcixp 8847 finSupp cfsupp 9288 0gc0g 17378 Σg cgsu 17379 DProd cdprd 19909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-ixp 8848 df-dprd 19911 |
| This theorem is referenced by: dprdssv 19932 eldprdi 19934 dprdsubg 19940 dprdss 19945 dmdprdsplitlem 19953 dprddisj2 19955 dpjidcl 19974 |
| Copyright terms: Public domain | W3C validator |