![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdub | Structured version Visualization version GIF version |
Description: Each factor is a subset of the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdub.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdub.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dprdub.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
dprdub | ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝐺 DProd 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
2 | eqid 2735 | . . . . . 6 ⊢ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} | |
3 | dprdub.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝐺dom DProd 𝑆) |
5 | dprdub.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → dom 𝑆 = 𝐼) |
7 | dprdub.3 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝑋 ∈ 𝐼) |
9 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝑥 ∈ (𝑆‘𝑋)) | |
10 | eqid 2735 | . . . . . 6 ⊢ (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) | |
11 | 1, 2, 4, 6, 8, 9, 10 | dprdfid 20052 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺)))) = 𝑥)) |
12 | 11 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺)))) = 𝑥) |
13 | 11 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) |
14 | 1, 2, 4, 6, 13 | eldprdi 20053 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺)))) ∈ (𝐺 DProd 𝑆)) |
15 | 12, 14 | eqeltrrd 2840 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝑥 ∈ (𝐺 DProd 𝑆)) |
16 | 15 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑆‘𝑋) → 𝑥 ∈ (𝐺 DProd 𝑆))) |
17 | 16 | ssrdv 4001 | 1 ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝐺 DProd 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 ⊆ wss 3963 ifcif 4531 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5689 ‘cfv 6563 (class class class)co 7431 Xcixp 8936 finSupp cfsupp 9399 0gc0g 17486 Σg cgsu 17487 DProd cdprd 20028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-0g 17488 df-gsum 17489 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-mulg 19099 df-subg 19154 df-cntz 19348 df-cmn 19815 df-dprd 20030 |
This theorem is referenced by: dprdspan 20062 dprd2dlem2 20075 dprd2da 20077 dmdprdsplit2lem 20080 dprdsplit 20083 dpjrid 20097 ablfac1c 20106 |
Copyright terms: Public domain | W3C validator |