Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprdub | Structured version Visualization version GIF version |
Description: Each factor is a subset of the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdub.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdub.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dprdub.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
dprdub | ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝐺 DProd 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
2 | eqid 2736 | . . . . . 6 ⊢ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} | |
3 | dprdub.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
4 | 3 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝐺dom DProd 𝑆) |
5 | dprdub.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
6 | 5 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → dom 𝑆 = 𝐼) |
7 | dprdub.3 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
8 | 7 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝑋 ∈ 𝐼) |
9 | simpr 486 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝑥 ∈ (𝑆‘𝑋)) | |
10 | eqid 2736 | . . . . . 6 ⊢ (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) | |
11 | 1, 2, 4, 6, 8, 9, 10 | dprdfid 19665 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺)))) = 𝑥)) |
12 | 11 | simprd 497 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺)))) = 𝑥) |
13 | 11 | simpld 496 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) |
14 | 1, 2, 4, 6, 13 | eldprdi 19666 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺)))) ∈ (𝐺 DProd 𝑆)) |
15 | 12, 14 | eqeltrrd 2838 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝑥 ∈ (𝐺 DProd 𝑆)) |
16 | 15 | ex 414 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑆‘𝑋) → 𝑥 ∈ (𝐺 DProd 𝑆))) |
17 | 16 | ssrdv 3932 | 1 ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝐺 DProd 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 {crab 3284 ⊆ wss 3892 ifcif 4465 class class class wbr 5081 ↦ cmpt 5164 dom cdm 5600 ‘cfv 6458 (class class class)co 7307 Xcixp 8716 finSupp cfsupp 9172 0gc0g 17195 Σg cgsu 17196 DProd cdprd 19641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-n0 12280 df-z 12366 df-uz 12629 df-fz 13286 df-fzo 13429 df-seq 13768 df-hash 14091 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-0g 17197 df-gsum 17198 df-mre 17340 df-mrc 17341 df-acs 17343 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-submnd 18476 df-grp 18625 df-mulg 18746 df-subg 18797 df-cntz 18968 df-cmn 19433 df-dprd 19643 |
This theorem is referenced by: dprdspan 19675 dprd2dlem2 19688 dprd2da 19690 dmdprdsplit2lem 19693 dprdsplit 19696 dpjrid 19710 ablfac1c 19719 |
Copyright terms: Public domain | W3C validator |