Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprdub | Structured version Visualization version GIF version |
Description: Each factor is a subset of the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdub.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdub.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dprdub.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
dprdub | ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝐺 DProd 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
2 | eqid 2737 | . . . . . 6 ⊢ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} | |
3 | dprdub.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
4 | 3 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝐺dom DProd 𝑆) |
5 | dprdub.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
6 | 5 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → dom 𝑆 = 𝐼) |
7 | dprdub.3 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
8 | 7 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝑋 ∈ 𝐼) |
9 | simpr 486 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝑥 ∈ (𝑆‘𝑋)) | |
10 | eqid 2737 | . . . . . 6 ⊢ (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) | |
11 | 1, 2, 4, 6, 8, 9, 10 | dprdfid 19714 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺)))) = 𝑥)) |
12 | 11 | simprd 497 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺)))) = 𝑥) |
13 | 11 | simpld 496 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) |
14 | 1, 2, 4, 6, 13 | eldprdi 19715 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺)))) ∈ (𝐺 DProd 𝑆)) |
15 | 12, 14 | eqeltrrd 2839 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝑥 ∈ (𝐺 DProd 𝑆)) |
16 | 15 | ex 414 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑆‘𝑋) → 𝑥 ∈ (𝐺 DProd 𝑆))) |
17 | 16 | ssrdv 3941 | 1 ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝐺 DProd 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 {crab 3404 ⊆ wss 3901 ifcif 4477 class class class wbr 5096 ↦ cmpt 5179 dom cdm 5624 ‘cfv 6483 (class class class)co 7341 Xcixp 8760 finSupp cfsupp 9230 0gc0g 17247 Σg cgsu 17248 DProd cdprd 19690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-iin 4948 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-supp 8052 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-er 8573 df-ixp 8761 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-fsupp 9231 df-oi 9371 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-2 12141 df-n0 12339 df-z 12425 df-uz 12688 df-fz 13345 df-fzo 13488 df-seq 13827 df-hash 14150 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-0g 17249 df-gsum 17250 df-mre 17392 df-mrc 17393 df-acs 17395 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-grp 18676 df-mulg 18797 df-subg 18848 df-cntz 19019 df-cmn 19483 df-dprd 19692 |
This theorem is referenced by: dprdspan 19724 dprd2dlem2 19737 dprd2da 19739 dmdprdsplit2lem 19742 dprdsplit 19745 dpjrid 19759 ablfac1c 19768 |
Copyright terms: Public domain | W3C validator |