MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fznn0 Structured version   Visualization version   GIF version

Theorem fznn0 13580
Description: Characterization of a finite set of sequential nonnegative integers. (Contributed by NM, 1-Aug-2005.)
Assertion
Ref Expression
fznn0 (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝐾𝑁)))

Proof of Theorem fznn0
StepHypRef Expression
1 0z 12540 . . 3 0 ∈ ℤ
2 nn0z 12554 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 elfz1 13473 . . 3 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁)))
41, 2, 3sylancr 587 . 2 (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁)))
5 df-3an 1088 . . 3 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁) ↔ ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ 𝐾𝑁))
6 elnn0z 12542 . . . 4 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
76anbi1i 624 . . 3 ((𝐾 ∈ ℕ0𝐾𝑁) ↔ ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ 𝐾𝑁))
85, 7bitr4i 278 . 2 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁) ↔ (𝐾 ∈ ℕ0𝐾𝑁))
94, 8bitrdi 287 1 (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5107  (class class class)co 7387  0cc0 11068  cle 11209  0cn0 12442  cz 12529  ...cfz 13468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-fz 13469
This theorem is referenced by:  nn0fz0  13586  swrdfv2  14626  efgredlem  19677  coe1mul2lem1  22153  coe1tmmul2  22162  coe1tmmul  22163  coe1mul3  26004  plypf1  26117  dvdsppwf1o  27096  dchrisumlem1  27400  ply1dg3rt0irred  33551  signstfveq0  34568  hbt  43119
  Copyright terms: Public domain W3C validator