Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fznn0 | Structured version Visualization version GIF version |
Description: Characterization of a finite set of sequential nonnegative integers. (Contributed by NM, 1-Aug-2005.) |
Ref | Expression |
---|---|
fznn0 | ⊢ (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12376 | . . 3 ⊢ 0 ∈ ℤ | |
2 | nn0z 12389 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
3 | elfz1 13290 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
4 | 1, 2, 3 | sylancr 588 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
5 | df-3an 1089 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) ↔ ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ 𝐾 ≤ 𝑁)) | |
6 | elnn0z 12378 | . . . 4 ⊢ (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) | |
7 | 6 | anbi1i 625 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁) ↔ ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ 𝐾 ≤ 𝑁)) |
8 | 5, 7 | bitr4i 278 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) |
9 | 4, 8 | bitrdi 287 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 ∈ wcel 2104 class class class wbr 5081 (class class class)co 7307 0cc0 10917 ≤ cle 11056 ℕ0cn0 12279 ℤcz 12365 ...cfz 13285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-n0 12280 df-z 12366 df-fz 13286 |
This theorem is referenced by: nn0fz0 13400 swrdfv2 14419 efgredlem 19398 coe1mul2lem1 21483 coe1tmmul2 21492 coe1tmmul 21493 coe1mul3 25309 plypf1 25418 dvdsppwf1o 26380 dchrisumlem1 26682 signstfveq0 32601 hbt 40993 |
Copyright terms: Public domain | W3C validator |