Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem11 Structured version   Visualization version   GIF version

Theorem lcmineqlem11 42071
Description: Induction step, continuation for binomial coefficients. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem11.1 (𝜑𝑀 ∈ ℕ)
lcmineqlem11.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem11.3 (𝜑𝑀 < 𝑁)
Assertion
Ref Expression
lcmineqlem11 (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = ((𝑀 / (𝑁𝑀)) · (1 / (𝑀 · (𝑁C𝑀)))))

Proof of Theorem lcmineqlem11
StepHypRef Expression
1 lcmineqlem11.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
21nncnd 12138 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
3 1cnd 11104 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
42, 3addcld 11128 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℂ)
5 lcmineqlem11.2 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
61nnnn0d 12439 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ0)
7 1nn0 12394 . . . . . . . . . . . . 13 1 ∈ ℕ0
87a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℕ0)
96, 8nn0addcld 12443 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ∈ ℕ0)
10 lcmineqlem11.3 . . . . . . . . . . . 12 (𝜑𝑀 < 𝑁)
111nnzd 12492 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
125nnzd 12492 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
13 zltp1le 12519 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
1411, 12, 13syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
1510, 14mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ≤ 𝑁)
165, 9, 15bccl2d 42023 . . . . . . . . . 10 (𝜑 → (𝑁C(𝑀 + 1)) ∈ ℕ)
1716nncnd 12138 . . . . . . . . 9 (𝜑 → (𝑁C(𝑀 + 1)) ∈ ℂ)
184, 17mulcld 11129 . . . . . . . 8 (𝜑 → ((𝑀 + 1) · (𝑁C(𝑀 + 1))) ∈ ℂ)
1918div1d 11886 . . . . . . 7 (𝜑 → (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = ((𝑀 + 1) · (𝑁C(𝑀 + 1))))
2011peano2zd 12577 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 + 1) ∈ ℤ)
211peano2nnd 12139 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ ℕ)
2221nnge1d 12170 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ≤ (𝑀 + 1))
2320, 22, 153jca 1128 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 + 1) ∈ ℤ ∧ 1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁))
24 1z 12499 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
25 elfz1 13409 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ∈ (1...𝑁) ↔ ((𝑀 + 1) ∈ ℤ ∧ 1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁)))
2624, 25mpan 690 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → ((𝑀 + 1) ∈ (1...𝑁) ↔ ((𝑀 + 1) ∈ ℤ ∧ 1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁)))
2712, 26syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 + 1) ∈ (1...𝑁) ↔ ((𝑀 + 1) ∈ ℤ ∧ 1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁)))
2823, 27mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 + 1) ∈ (1...𝑁))
29 bcm1k 14219 . . . . . . . . . . . . . 14 ((𝑀 + 1) ∈ (1...𝑁) → (𝑁C(𝑀 + 1)) = ((𝑁C((𝑀 + 1) − 1)) · ((𝑁 − ((𝑀 + 1) − 1)) / (𝑀 + 1))))
3028, 29syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑁C(𝑀 + 1)) = ((𝑁C((𝑀 + 1) − 1)) · ((𝑁 − ((𝑀 + 1) − 1)) / (𝑀 + 1))))
312, 3pncand 11470 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
3231oveq2d 7362 . . . . . . . . . . . . . 14 (𝜑 → (𝑁C((𝑀 + 1) − 1)) = (𝑁C𝑀))
3331oveq2d 7362 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 − ((𝑀 + 1) − 1)) = (𝑁𝑀))
3433oveq1d 7361 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − ((𝑀 + 1) − 1)) / (𝑀 + 1)) = ((𝑁𝑀) / (𝑀 + 1)))
3532, 34oveq12d 7364 . . . . . . . . . . . . 13 (𝜑 → ((𝑁C((𝑀 + 1) − 1)) · ((𝑁 − ((𝑀 + 1) − 1)) / (𝑀 + 1))) = ((𝑁C𝑀) · ((𝑁𝑀) / (𝑀 + 1))))
3630, 35eqtrd 2766 . . . . . . . . . . . 12 (𝜑 → (𝑁C(𝑀 + 1)) = ((𝑁C𝑀) · ((𝑁𝑀) / (𝑀 + 1))))
371nnred 12137 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
385nnred 12137 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
3937, 38, 10ltled 11258 . . . . . . . . . . . . . . 15 (𝜑𝑀𝑁)
405, 6, 39bccl2d 42023 . . . . . . . . . . . . . 14 (𝜑 → (𝑁C𝑀) ∈ ℕ)
4140nncnd 12138 . . . . . . . . . . . . 13 (𝜑 → (𝑁C𝑀) ∈ ℂ)
425nncnd 12138 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
4342, 2subcld 11469 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝑀) ∈ ℂ)
4421nnne0d 12172 . . . . . . . . . . . . 13 (𝜑 → (𝑀 + 1) ≠ 0)
4541, 43, 4, 44divassd 11929 . . . . . . . . . . . 12 (𝜑 → (((𝑁C𝑀) · (𝑁𝑀)) / (𝑀 + 1)) = ((𝑁C𝑀) · ((𝑁𝑀) / (𝑀 + 1))))
4636, 45eqtr4d 2769 . . . . . . . . . . 11 (𝜑 → (𝑁C(𝑀 + 1)) = (((𝑁C𝑀) · (𝑁𝑀)) / (𝑀 + 1)))
4746eqcomd 2737 . . . . . . . . . 10 (𝜑 → (((𝑁C𝑀) · (𝑁𝑀)) / (𝑀 + 1)) = (𝑁C(𝑀 + 1)))
4841, 43mulcld 11129 . . . . . . . . . . 11 (𝜑 → ((𝑁C𝑀) · (𝑁𝑀)) ∈ ℂ)
4948, 17, 4, 44divmul2d 11927 . . . . . . . . . 10 (𝜑 → ((((𝑁C𝑀) · (𝑁𝑀)) / (𝑀 + 1)) = (𝑁C(𝑀 + 1)) ↔ ((𝑁C𝑀) · (𝑁𝑀)) = ((𝑀 + 1) · (𝑁C(𝑀 + 1)))))
5047, 49mpbid 232 . . . . . . . . 9 (𝜑 → ((𝑁C𝑀) · (𝑁𝑀)) = ((𝑀 + 1) · (𝑁C(𝑀 + 1))))
5150eqcomd 2737 . . . . . . . 8 (𝜑 → ((𝑀 + 1) · (𝑁C(𝑀 + 1))) = ((𝑁C𝑀) · (𝑁𝑀)))
5241, 43mulcomd 11130 . . . . . . . 8 (𝜑 → ((𝑁C𝑀) · (𝑁𝑀)) = ((𝑁𝑀) · (𝑁C𝑀)))
5351, 52eqtrd 2766 . . . . . . 7 (𝜑 → ((𝑀 + 1) · (𝑁C(𝑀 + 1))) = ((𝑁𝑀) · (𝑁C𝑀)))
5419, 53eqtrd 2766 . . . . . 6 (𝜑 → (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = ((𝑁𝑀) · (𝑁C𝑀)))
5543, 41mulcld 11129 . . . . . . 7 (𝜑 → ((𝑁𝑀) · (𝑁C𝑀)) ∈ ℂ)
561nnne0d 12172 . . . . . . 7 (𝜑𝑀 ≠ 0)
5755, 2, 56divcan3d 11899 . . . . . 6 (𝜑 → ((𝑀 · ((𝑁𝑀) · (𝑁C𝑀))) / 𝑀) = ((𝑁𝑀) · (𝑁C𝑀)))
5854, 57eqtr4d 2769 . . . . 5 (𝜑 → (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = ((𝑀 · ((𝑁𝑀) · (𝑁C𝑀))) / 𝑀))
592, 43, 41mul12d 11319 . . . . . 6 (𝜑 → (𝑀 · ((𝑁𝑀) · (𝑁C𝑀))) = ((𝑁𝑀) · (𝑀 · (𝑁C𝑀))))
6059oveq1d 7361 . . . . 5 (𝜑 → ((𝑀 · ((𝑁𝑀) · (𝑁C𝑀))) / 𝑀) = (((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) / 𝑀))
6158, 60eqtrd 2766 . . . 4 (𝜑 → (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = (((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) / 𝑀))
62 0ne1 12193 . . . . . . 7 0 ≠ 1
6362a1i 11 . . . . . 6 (𝜑 → 0 ≠ 1)
6463necomd 2983 . . . . 5 (𝜑 → 1 ≠ 0)
6516nnne0d 12172 . . . . . 6 (𝜑 → (𝑁C(𝑀 + 1)) ≠ 0)
664, 17, 44, 65mulne0d 11766 . . . . 5 (𝜑 → ((𝑀 + 1) · (𝑁C(𝑀 + 1))) ≠ 0)
672, 41mulcld 11129 . . . . . 6 (𝜑 → (𝑀 · (𝑁C𝑀)) ∈ ℂ)
6843, 67mulcld 11129 . . . . 5 (𝜑 → ((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) ∈ ℂ)
6937, 10gtned 11245 . . . . . . 7 (𝜑𝑁𝑀)
7042, 2, 69subne0d 11478 . . . . . 6 (𝜑 → (𝑁𝑀) ≠ 0)
7140nnne0d 12172 . . . . . . 7 (𝜑 → (𝑁C𝑀) ≠ 0)
722, 41, 56, 71mulne0d 11766 . . . . . 6 (𝜑 → (𝑀 · (𝑁C𝑀)) ≠ 0)
7343, 67, 70, 72mulne0d 11766 . . . . 5 (𝜑 → ((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) ≠ 0)
743, 64, 18, 66, 2, 56, 68, 73recbothd 42024 . . . 4 (𝜑 → ((1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = (𝑀 / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))) ↔ (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = (((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) / 𝑀)))
7561, 74mpbird 257 . . 3 (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = (𝑀 / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))))
762mulridd 11126 . . . 4 (𝜑 → (𝑀 · 1) = 𝑀)
7776oveq1d 7361 . . 3 (𝜑 → ((𝑀 · 1) / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))) = (𝑀 / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))))
7875, 77eqtr4d 2769 . 2 (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = ((𝑀 · 1) / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))))
792, 43, 3, 67, 70, 72divmuldivd 11935 . 2 (𝜑 → ((𝑀 / (𝑁𝑀)) · (1 / (𝑀 · (𝑁C𝑀)))) = ((𝑀 · 1) / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))))
8078, 79eqtr4d 2769 1 (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = ((𝑀 / (𝑁𝑀)) · (1 / (𝑀 · (𝑁C𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  (class class class)co 7346  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008   < clt 11143  cle 11144  cmin 11341   / cdiv 11771  cn 12122  0cn0 12378  cz 12465  ...cfz 13404  Ccbc 14206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-seq 13906  df-fac 14178  df-bc 14207
This theorem is referenced by:  lcmineqlem13  42073
  Copyright terms: Public domain W3C validator