Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem11 Structured version   Visualization version   GIF version

Theorem lcmineqlem11 42027
Description: Induction step, continuation for binomial coefficients. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem11.1 (𝜑𝑀 ∈ ℕ)
lcmineqlem11.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem11.3 (𝜑𝑀 < 𝑁)
Assertion
Ref Expression
lcmineqlem11 (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = ((𝑀 / (𝑁𝑀)) · (1 / (𝑀 · (𝑁C𝑀)))))

Proof of Theorem lcmineqlem11
StepHypRef Expression
1 lcmineqlem11.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
21nncnd 12202 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
3 1cnd 11169 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
42, 3addcld 11193 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℂ)
5 lcmineqlem11.2 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
61nnnn0d 12503 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ0)
7 1nn0 12458 . . . . . . . . . . . . 13 1 ∈ ℕ0
87a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℕ0)
96, 8nn0addcld 12507 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ∈ ℕ0)
10 lcmineqlem11.3 . . . . . . . . . . . 12 (𝜑𝑀 < 𝑁)
111nnzd 12556 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
125nnzd 12556 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
13 zltp1le 12583 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
1411, 12, 13syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
1510, 14mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ≤ 𝑁)
165, 9, 15bccl2d 41979 . . . . . . . . . 10 (𝜑 → (𝑁C(𝑀 + 1)) ∈ ℕ)
1716nncnd 12202 . . . . . . . . 9 (𝜑 → (𝑁C(𝑀 + 1)) ∈ ℂ)
184, 17mulcld 11194 . . . . . . . 8 (𝜑 → ((𝑀 + 1) · (𝑁C(𝑀 + 1))) ∈ ℂ)
1918div1d 11950 . . . . . . 7 (𝜑 → (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = ((𝑀 + 1) · (𝑁C(𝑀 + 1))))
2011peano2zd 12641 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 + 1) ∈ ℤ)
211peano2nnd 12203 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ ℕ)
2221nnge1d 12234 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ≤ (𝑀 + 1))
2320, 22, 153jca 1128 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 + 1) ∈ ℤ ∧ 1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁))
24 1z 12563 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
25 elfz1 13473 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ∈ (1...𝑁) ↔ ((𝑀 + 1) ∈ ℤ ∧ 1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁)))
2624, 25mpan 690 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → ((𝑀 + 1) ∈ (1...𝑁) ↔ ((𝑀 + 1) ∈ ℤ ∧ 1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁)))
2712, 26syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 + 1) ∈ (1...𝑁) ↔ ((𝑀 + 1) ∈ ℤ ∧ 1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁)))
2823, 27mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 + 1) ∈ (1...𝑁))
29 bcm1k 14280 . . . . . . . . . . . . . 14 ((𝑀 + 1) ∈ (1...𝑁) → (𝑁C(𝑀 + 1)) = ((𝑁C((𝑀 + 1) − 1)) · ((𝑁 − ((𝑀 + 1) − 1)) / (𝑀 + 1))))
3028, 29syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑁C(𝑀 + 1)) = ((𝑁C((𝑀 + 1) − 1)) · ((𝑁 − ((𝑀 + 1) − 1)) / (𝑀 + 1))))
312, 3pncand 11534 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
3231oveq2d 7403 . . . . . . . . . . . . . 14 (𝜑 → (𝑁C((𝑀 + 1) − 1)) = (𝑁C𝑀))
3331oveq2d 7403 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 − ((𝑀 + 1) − 1)) = (𝑁𝑀))
3433oveq1d 7402 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − ((𝑀 + 1) − 1)) / (𝑀 + 1)) = ((𝑁𝑀) / (𝑀 + 1)))
3532, 34oveq12d 7405 . . . . . . . . . . . . 13 (𝜑 → ((𝑁C((𝑀 + 1) − 1)) · ((𝑁 − ((𝑀 + 1) − 1)) / (𝑀 + 1))) = ((𝑁C𝑀) · ((𝑁𝑀) / (𝑀 + 1))))
3630, 35eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → (𝑁C(𝑀 + 1)) = ((𝑁C𝑀) · ((𝑁𝑀) / (𝑀 + 1))))
371nnred 12201 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
385nnred 12201 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
3937, 38, 10ltled 11322 . . . . . . . . . . . . . . 15 (𝜑𝑀𝑁)
405, 6, 39bccl2d 41979 . . . . . . . . . . . . . 14 (𝜑 → (𝑁C𝑀) ∈ ℕ)
4140nncnd 12202 . . . . . . . . . . . . 13 (𝜑 → (𝑁C𝑀) ∈ ℂ)
425nncnd 12202 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
4342, 2subcld 11533 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝑀) ∈ ℂ)
4421nnne0d 12236 . . . . . . . . . . . . 13 (𝜑 → (𝑀 + 1) ≠ 0)
4541, 43, 4, 44divassd 11993 . . . . . . . . . . . 12 (𝜑 → (((𝑁C𝑀) · (𝑁𝑀)) / (𝑀 + 1)) = ((𝑁C𝑀) · ((𝑁𝑀) / (𝑀 + 1))))
4636, 45eqtr4d 2767 . . . . . . . . . . 11 (𝜑 → (𝑁C(𝑀 + 1)) = (((𝑁C𝑀) · (𝑁𝑀)) / (𝑀 + 1)))
4746eqcomd 2735 . . . . . . . . . 10 (𝜑 → (((𝑁C𝑀) · (𝑁𝑀)) / (𝑀 + 1)) = (𝑁C(𝑀 + 1)))
4841, 43mulcld 11194 . . . . . . . . . . 11 (𝜑 → ((𝑁C𝑀) · (𝑁𝑀)) ∈ ℂ)
4948, 17, 4, 44divmul2d 11991 . . . . . . . . . 10 (𝜑 → ((((𝑁C𝑀) · (𝑁𝑀)) / (𝑀 + 1)) = (𝑁C(𝑀 + 1)) ↔ ((𝑁C𝑀) · (𝑁𝑀)) = ((𝑀 + 1) · (𝑁C(𝑀 + 1)))))
5047, 49mpbid 232 . . . . . . . . 9 (𝜑 → ((𝑁C𝑀) · (𝑁𝑀)) = ((𝑀 + 1) · (𝑁C(𝑀 + 1))))
5150eqcomd 2735 . . . . . . . 8 (𝜑 → ((𝑀 + 1) · (𝑁C(𝑀 + 1))) = ((𝑁C𝑀) · (𝑁𝑀)))
5241, 43mulcomd 11195 . . . . . . . 8 (𝜑 → ((𝑁C𝑀) · (𝑁𝑀)) = ((𝑁𝑀) · (𝑁C𝑀)))
5351, 52eqtrd 2764 . . . . . . 7 (𝜑 → ((𝑀 + 1) · (𝑁C(𝑀 + 1))) = ((𝑁𝑀) · (𝑁C𝑀)))
5419, 53eqtrd 2764 . . . . . 6 (𝜑 → (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = ((𝑁𝑀) · (𝑁C𝑀)))
5543, 41mulcld 11194 . . . . . . 7 (𝜑 → ((𝑁𝑀) · (𝑁C𝑀)) ∈ ℂ)
561nnne0d 12236 . . . . . . 7 (𝜑𝑀 ≠ 0)
5755, 2, 56divcan3d 11963 . . . . . 6 (𝜑 → ((𝑀 · ((𝑁𝑀) · (𝑁C𝑀))) / 𝑀) = ((𝑁𝑀) · (𝑁C𝑀)))
5854, 57eqtr4d 2767 . . . . 5 (𝜑 → (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = ((𝑀 · ((𝑁𝑀) · (𝑁C𝑀))) / 𝑀))
592, 43, 41mul12d 11383 . . . . . 6 (𝜑 → (𝑀 · ((𝑁𝑀) · (𝑁C𝑀))) = ((𝑁𝑀) · (𝑀 · (𝑁C𝑀))))
6059oveq1d 7402 . . . . 5 (𝜑 → ((𝑀 · ((𝑁𝑀) · (𝑁C𝑀))) / 𝑀) = (((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) / 𝑀))
6158, 60eqtrd 2764 . . . 4 (𝜑 → (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = (((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) / 𝑀))
62 0ne1 12257 . . . . . . 7 0 ≠ 1
6362a1i 11 . . . . . 6 (𝜑 → 0 ≠ 1)
6463necomd 2980 . . . . 5 (𝜑 → 1 ≠ 0)
6516nnne0d 12236 . . . . . 6 (𝜑 → (𝑁C(𝑀 + 1)) ≠ 0)
664, 17, 44, 65mulne0d 11830 . . . . 5 (𝜑 → ((𝑀 + 1) · (𝑁C(𝑀 + 1))) ≠ 0)
672, 41mulcld 11194 . . . . . 6 (𝜑 → (𝑀 · (𝑁C𝑀)) ∈ ℂ)
6843, 67mulcld 11194 . . . . 5 (𝜑 → ((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) ∈ ℂ)
6937, 10gtned 11309 . . . . . . 7 (𝜑𝑁𝑀)
7042, 2, 69subne0d 11542 . . . . . 6 (𝜑 → (𝑁𝑀) ≠ 0)
7140nnne0d 12236 . . . . . . 7 (𝜑 → (𝑁C𝑀) ≠ 0)
722, 41, 56, 71mulne0d 11830 . . . . . 6 (𝜑 → (𝑀 · (𝑁C𝑀)) ≠ 0)
7343, 67, 70, 72mulne0d 11830 . . . . 5 (𝜑 → ((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) ≠ 0)
743, 64, 18, 66, 2, 56, 68, 73recbothd 41980 . . . 4 (𝜑 → ((1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = (𝑀 / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))) ↔ (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = (((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) / 𝑀)))
7561, 74mpbird 257 . . 3 (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = (𝑀 / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))))
762mulridd 11191 . . . 4 (𝜑 → (𝑀 · 1) = 𝑀)
7776oveq1d 7402 . . 3 (𝜑 → ((𝑀 · 1) / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))) = (𝑀 / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))))
7875, 77eqtr4d 2767 . 2 (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = ((𝑀 · 1) / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))))
792, 43, 3, 67, 70, 72divmuldivd 11999 . 2 (𝜑 → ((𝑀 / (𝑁𝑀)) · (1 / (𝑀 · (𝑁C𝑀)))) = ((𝑀 · 1) / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))))
8078, 79eqtr4d 2767 1 (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = ((𝑀 / (𝑁𝑀)) · (1 / (𝑀 · (𝑁C𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  ...cfz 13468  Ccbc 14267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-seq 13967  df-fac 14239  df-bc 14268
This theorem is referenced by:  lcmineqlem13  42029
  Copyright terms: Public domain W3C validator