Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem11 Structured version   Visualization version   GIF version

Theorem lcmineqlem11 39591
Description: Induction step, continuation for binomial coefficients. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem11.1 (𝜑𝑀 ∈ ℕ)
lcmineqlem11.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem11.3 (𝜑𝑀 < 𝑁)
Assertion
Ref Expression
lcmineqlem11 (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = ((𝑀 / (𝑁𝑀)) · (1 / (𝑀 · (𝑁C𝑀)))))

Proof of Theorem lcmineqlem11
StepHypRef Expression
1 lcmineqlem11.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
21nncnd 11675 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
3 1cnd 10659 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
42, 3addcld 10683 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℂ)
5 lcmineqlem11.2 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
61nnnn0d 11979 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ0)
7 1nn0 11935 . . . . . . . . . . . . 13 1 ∈ ℕ0
87a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℕ0)
96, 8nn0addcld 11983 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ∈ ℕ0)
10 lcmineqlem11.3 . . . . . . . . . . . 12 (𝜑𝑀 < 𝑁)
111nnzd 12110 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
125nnzd 12110 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
13 zltp1le 12056 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
1411, 12, 13syl2anc 588 . . . . . . . . . . . 12 (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
1510, 14mpbid 235 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ≤ 𝑁)
165, 9, 15bccl2d 39544 . . . . . . . . . 10 (𝜑 → (𝑁C(𝑀 + 1)) ∈ ℕ)
1716nncnd 11675 . . . . . . . . 9 (𝜑 → (𝑁C(𝑀 + 1)) ∈ ℂ)
184, 17mulcld 10684 . . . . . . . 8 (𝜑 → ((𝑀 + 1) · (𝑁C(𝑀 + 1))) ∈ ℂ)
1918div1d 11431 . . . . . . 7 (𝜑 → (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = ((𝑀 + 1) · (𝑁C(𝑀 + 1))))
2011peano2zd 12114 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 + 1) ∈ ℤ)
211peano2nnd 11676 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ ℕ)
2221nnge1d 11707 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ≤ (𝑀 + 1))
2320, 22, 153jca 1126 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 + 1) ∈ ℤ ∧ 1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁))
24 1z 12036 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
25 elfz1 12929 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ∈ (1...𝑁) ↔ ((𝑀 + 1) ∈ ℤ ∧ 1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁)))
2624, 25mpan 690 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → ((𝑀 + 1) ∈ (1...𝑁) ↔ ((𝑀 + 1) ∈ ℤ ∧ 1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁)))
2712, 26syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 + 1) ∈ (1...𝑁) ↔ ((𝑀 + 1) ∈ ℤ ∧ 1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁)))
2823, 27mpbird 260 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 + 1) ∈ (1...𝑁))
29 bcm1k 13710 . . . . . . . . . . . . . 14 ((𝑀 + 1) ∈ (1...𝑁) → (𝑁C(𝑀 + 1)) = ((𝑁C((𝑀 + 1) − 1)) · ((𝑁 − ((𝑀 + 1) − 1)) / (𝑀 + 1))))
3028, 29syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑁C(𝑀 + 1)) = ((𝑁C((𝑀 + 1) − 1)) · ((𝑁 − ((𝑀 + 1) − 1)) / (𝑀 + 1))))
312, 3pncand 11021 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
3231oveq2d 7159 . . . . . . . . . . . . . 14 (𝜑 → (𝑁C((𝑀 + 1) − 1)) = (𝑁C𝑀))
3331oveq2d 7159 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 − ((𝑀 + 1) − 1)) = (𝑁𝑀))
3433oveq1d 7158 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − ((𝑀 + 1) − 1)) / (𝑀 + 1)) = ((𝑁𝑀) / (𝑀 + 1)))
3532, 34oveq12d 7161 . . . . . . . . . . . . 13 (𝜑 → ((𝑁C((𝑀 + 1) − 1)) · ((𝑁 − ((𝑀 + 1) − 1)) / (𝑀 + 1))) = ((𝑁C𝑀) · ((𝑁𝑀) / (𝑀 + 1))))
3630, 35eqtrd 2794 . . . . . . . . . . . 12 (𝜑 → (𝑁C(𝑀 + 1)) = ((𝑁C𝑀) · ((𝑁𝑀) / (𝑀 + 1))))
371nnred 11674 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
385nnred 11674 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
3937, 38, 10ltled 10811 . . . . . . . . . . . . . . 15 (𝜑𝑀𝑁)
405, 6, 39bccl2d 39544 . . . . . . . . . . . . . 14 (𝜑 → (𝑁C𝑀) ∈ ℕ)
4140nncnd 11675 . . . . . . . . . . . . 13 (𝜑 → (𝑁C𝑀) ∈ ℂ)
425nncnd 11675 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
4342, 2subcld 11020 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝑀) ∈ ℂ)
4421nnne0d 11709 . . . . . . . . . . . . 13 (𝜑 → (𝑀 + 1) ≠ 0)
4541, 43, 4, 44divassd 11474 . . . . . . . . . . . 12 (𝜑 → (((𝑁C𝑀) · (𝑁𝑀)) / (𝑀 + 1)) = ((𝑁C𝑀) · ((𝑁𝑀) / (𝑀 + 1))))
4636, 45eqtr4d 2797 . . . . . . . . . . 11 (𝜑 → (𝑁C(𝑀 + 1)) = (((𝑁C𝑀) · (𝑁𝑀)) / (𝑀 + 1)))
4746eqcomd 2765 . . . . . . . . . 10 (𝜑 → (((𝑁C𝑀) · (𝑁𝑀)) / (𝑀 + 1)) = (𝑁C(𝑀 + 1)))
4841, 43mulcld 10684 . . . . . . . . . . 11 (𝜑 → ((𝑁C𝑀) · (𝑁𝑀)) ∈ ℂ)
4948, 17, 4, 44divmul2d 11472 . . . . . . . . . 10 (𝜑 → ((((𝑁C𝑀) · (𝑁𝑀)) / (𝑀 + 1)) = (𝑁C(𝑀 + 1)) ↔ ((𝑁C𝑀) · (𝑁𝑀)) = ((𝑀 + 1) · (𝑁C(𝑀 + 1)))))
5047, 49mpbid 235 . . . . . . . . 9 (𝜑 → ((𝑁C𝑀) · (𝑁𝑀)) = ((𝑀 + 1) · (𝑁C(𝑀 + 1))))
5150eqcomd 2765 . . . . . . . 8 (𝜑 → ((𝑀 + 1) · (𝑁C(𝑀 + 1))) = ((𝑁C𝑀) · (𝑁𝑀)))
5241, 43mulcomd 10685 . . . . . . . 8 (𝜑 → ((𝑁C𝑀) · (𝑁𝑀)) = ((𝑁𝑀) · (𝑁C𝑀)))
5351, 52eqtrd 2794 . . . . . . 7 (𝜑 → ((𝑀 + 1) · (𝑁C(𝑀 + 1))) = ((𝑁𝑀) · (𝑁C𝑀)))
5419, 53eqtrd 2794 . . . . . 6 (𝜑 → (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = ((𝑁𝑀) · (𝑁C𝑀)))
5543, 41mulcld 10684 . . . . . . 7 (𝜑 → ((𝑁𝑀) · (𝑁C𝑀)) ∈ ℂ)
561nnne0d 11709 . . . . . . 7 (𝜑𝑀 ≠ 0)
5755, 2, 56divcan3d 11444 . . . . . 6 (𝜑 → ((𝑀 · ((𝑁𝑀) · (𝑁C𝑀))) / 𝑀) = ((𝑁𝑀) · (𝑁C𝑀)))
5854, 57eqtr4d 2797 . . . . 5 (𝜑 → (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = ((𝑀 · ((𝑁𝑀) · (𝑁C𝑀))) / 𝑀))
592, 43, 41mul12d 10872 . . . . . 6 (𝜑 → (𝑀 · ((𝑁𝑀) · (𝑁C𝑀))) = ((𝑁𝑀) · (𝑀 · (𝑁C𝑀))))
6059oveq1d 7158 . . . . 5 (𝜑 → ((𝑀 · ((𝑁𝑀) · (𝑁C𝑀))) / 𝑀) = (((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) / 𝑀))
6158, 60eqtrd 2794 . . . 4 (𝜑 → (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = (((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) / 𝑀))
62 0ne1 11730 . . . . . . 7 0 ≠ 1
6362a1i 11 . . . . . 6 (𝜑 → 0 ≠ 1)
6463necomd 3004 . . . . 5 (𝜑 → 1 ≠ 0)
6516nnne0d 11709 . . . . . 6 (𝜑 → (𝑁C(𝑀 + 1)) ≠ 0)
664, 17, 44, 65mulne0d 11315 . . . . 5 (𝜑 → ((𝑀 + 1) · (𝑁C(𝑀 + 1))) ≠ 0)
672, 41mulcld 10684 . . . . . 6 (𝜑 → (𝑀 · (𝑁C𝑀)) ∈ ℂ)
6843, 67mulcld 10684 . . . . 5 (𝜑 → ((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) ∈ ℂ)
6937, 10gtned 10798 . . . . . . 7 (𝜑𝑁𝑀)
7042, 2, 69subne0d 11029 . . . . . 6 (𝜑 → (𝑁𝑀) ≠ 0)
7140nnne0d 11709 . . . . . . 7 (𝜑 → (𝑁C𝑀) ≠ 0)
722, 41, 56, 71mulne0d 11315 . . . . . 6 (𝜑 → (𝑀 · (𝑁C𝑀)) ≠ 0)
7343, 67, 70, 72mulne0d 11315 . . . . 5 (𝜑 → ((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) ≠ 0)
743, 64, 18, 66, 2, 56, 68, 73recbothd 39545 . . . 4 (𝜑 → ((1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = (𝑀 / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))) ↔ (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = (((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) / 𝑀)))
7561, 74mpbird 260 . . 3 (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = (𝑀 / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))))
762mulid1d 10681 . . . 4 (𝜑 → (𝑀 · 1) = 𝑀)
7776oveq1d 7158 . . 3 (𝜑 → ((𝑀 · 1) / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))) = (𝑀 / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))))
7875, 77eqtr4d 2797 . 2 (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = ((𝑀 · 1) / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))))
792, 43, 3, 67, 70, 72divmuldivd 11480 . 2 (𝜑 → ((𝑀 / (𝑁𝑀)) · (1 / (𝑀 · (𝑁C𝑀)))) = ((𝑀 · 1) / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))))
8078, 79eqtr4d 2797 1 (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = ((𝑀 / (𝑁𝑀)) · (1 / (𝑀 · (𝑁C𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1085   = wceq 1539  wcel 2112  wne 2949   class class class wbr 5025  (class class class)co 7143  0cc0 10560  1c1 10561   + caddc 10563   · cmul 10565   < clt 10698  cle 10699  cmin 10893   / cdiv 11320  cn 11659  0cn0 11919  cz 12005  ...cfz 12924  Ccbc 13697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-div 11321  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-rp 12416  df-fz 12925  df-seq 13404  df-fac 13669  df-bc 13698
This theorem is referenced by:  lcmineqlem13  39593
  Copyright terms: Public domain W3C validator