Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem11 Structured version   Visualization version   GIF version

Theorem lcmineqlem11 42034
Description: Induction step, continuation for binomial coefficients. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem11.1 (𝜑𝑀 ∈ ℕ)
lcmineqlem11.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem11.3 (𝜑𝑀 < 𝑁)
Assertion
Ref Expression
lcmineqlem11 (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = ((𝑀 / (𝑁𝑀)) · (1 / (𝑀 · (𝑁C𝑀)))))

Proof of Theorem lcmineqlem11
StepHypRef Expression
1 lcmineqlem11.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
21nncnd 12209 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
3 1cnd 11176 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
42, 3addcld 11200 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℂ)
5 lcmineqlem11.2 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
61nnnn0d 12510 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ0)
7 1nn0 12465 . . . . . . . . . . . . 13 1 ∈ ℕ0
87a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℕ0)
96, 8nn0addcld 12514 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ∈ ℕ0)
10 lcmineqlem11.3 . . . . . . . . . . . 12 (𝜑𝑀 < 𝑁)
111nnzd 12563 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
125nnzd 12563 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
13 zltp1le 12590 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
1411, 12, 13syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
1510, 14mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ≤ 𝑁)
165, 9, 15bccl2d 41986 . . . . . . . . . 10 (𝜑 → (𝑁C(𝑀 + 1)) ∈ ℕ)
1716nncnd 12209 . . . . . . . . 9 (𝜑 → (𝑁C(𝑀 + 1)) ∈ ℂ)
184, 17mulcld 11201 . . . . . . . 8 (𝜑 → ((𝑀 + 1) · (𝑁C(𝑀 + 1))) ∈ ℂ)
1918div1d 11957 . . . . . . 7 (𝜑 → (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = ((𝑀 + 1) · (𝑁C(𝑀 + 1))))
2011peano2zd 12648 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 + 1) ∈ ℤ)
211peano2nnd 12210 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ ℕ)
2221nnge1d 12241 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ≤ (𝑀 + 1))
2320, 22, 153jca 1128 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 + 1) ∈ ℤ ∧ 1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁))
24 1z 12570 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
25 elfz1 13480 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ∈ (1...𝑁) ↔ ((𝑀 + 1) ∈ ℤ ∧ 1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁)))
2624, 25mpan 690 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → ((𝑀 + 1) ∈ (1...𝑁) ↔ ((𝑀 + 1) ∈ ℤ ∧ 1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁)))
2712, 26syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 + 1) ∈ (1...𝑁) ↔ ((𝑀 + 1) ∈ ℤ ∧ 1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁)))
2823, 27mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 + 1) ∈ (1...𝑁))
29 bcm1k 14287 . . . . . . . . . . . . . 14 ((𝑀 + 1) ∈ (1...𝑁) → (𝑁C(𝑀 + 1)) = ((𝑁C((𝑀 + 1) − 1)) · ((𝑁 − ((𝑀 + 1) − 1)) / (𝑀 + 1))))
3028, 29syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑁C(𝑀 + 1)) = ((𝑁C((𝑀 + 1) − 1)) · ((𝑁 − ((𝑀 + 1) − 1)) / (𝑀 + 1))))
312, 3pncand 11541 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
3231oveq2d 7406 . . . . . . . . . . . . . 14 (𝜑 → (𝑁C((𝑀 + 1) − 1)) = (𝑁C𝑀))
3331oveq2d 7406 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 − ((𝑀 + 1) − 1)) = (𝑁𝑀))
3433oveq1d 7405 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − ((𝑀 + 1) − 1)) / (𝑀 + 1)) = ((𝑁𝑀) / (𝑀 + 1)))
3532, 34oveq12d 7408 . . . . . . . . . . . . 13 (𝜑 → ((𝑁C((𝑀 + 1) − 1)) · ((𝑁 − ((𝑀 + 1) − 1)) / (𝑀 + 1))) = ((𝑁C𝑀) · ((𝑁𝑀) / (𝑀 + 1))))
3630, 35eqtrd 2765 . . . . . . . . . . . 12 (𝜑 → (𝑁C(𝑀 + 1)) = ((𝑁C𝑀) · ((𝑁𝑀) / (𝑀 + 1))))
371nnred 12208 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
385nnred 12208 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
3937, 38, 10ltled 11329 . . . . . . . . . . . . . . 15 (𝜑𝑀𝑁)
405, 6, 39bccl2d 41986 . . . . . . . . . . . . . 14 (𝜑 → (𝑁C𝑀) ∈ ℕ)
4140nncnd 12209 . . . . . . . . . . . . 13 (𝜑 → (𝑁C𝑀) ∈ ℂ)
425nncnd 12209 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
4342, 2subcld 11540 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝑀) ∈ ℂ)
4421nnne0d 12243 . . . . . . . . . . . . 13 (𝜑 → (𝑀 + 1) ≠ 0)
4541, 43, 4, 44divassd 12000 . . . . . . . . . . . 12 (𝜑 → (((𝑁C𝑀) · (𝑁𝑀)) / (𝑀 + 1)) = ((𝑁C𝑀) · ((𝑁𝑀) / (𝑀 + 1))))
4636, 45eqtr4d 2768 . . . . . . . . . . 11 (𝜑 → (𝑁C(𝑀 + 1)) = (((𝑁C𝑀) · (𝑁𝑀)) / (𝑀 + 1)))
4746eqcomd 2736 . . . . . . . . . 10 (𝜑 → (((𝑁C𝑀) · (𝑁𝑀)) / (𝑀 + 1)) = (𝑁C(𝑀 + 1)))
4841, 43mulcld 11201 . . . . . . . . . . 11 (𝜑 → ((𝑁C𝑀) · (𝑁𝑀)) ∈ ℂ)
4948, 17, 4, 44divmul2d 11998 . . . . . . . . . 10 (𝜑 → ((((𝑁C𝑀) · (𝑁𝑀)) / (𝑀 + 1)) = (𝑁C(𝑀 + 1)) ↔ ((𝑁C𝑀) · (𝑁𝑀)) = ((𝑀 + 1) · (𝑁C(𝑀 + 1)))))
5047, 49mpbid 232 . . . . . . . . 9 (𝜑 → ((𝑁C𝑀) · (𝑁𝑀)) = ((𝑀 + 1) · (𝑁C(𝑀 + 1))))
5150eqcomd 2736 . . . . . . . 8 (𝜑 → ((𝑀 + 1) · (𝑁C(𝑀 + 1))) = ((𝑁C𝑀) · (𝑁𝑀)))
5241, 43mulcomd 11202 . . . . . . . 8 (𝜑 → ((𝑁C𝑀) · (𝑁𝑀)) = ((𝑁𝑀) · (𝑁C𝑀)))
5351, 52eqtrd 2765 . . . . . . 7 (𝜑 → ((𝑀 + 1) · (𝑁C(𝑀 + 1))) = ((𝑁𝑀) · (𝑁C𝑀)))
5419, 53eqtrd 2765 . . . . . 6 (𝜑 → (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = ((𝑁𝑀) · (𝑁C𝑀)))
5543, 41mulcld 11201 . . . . . . 7 (𝜑 → ((𝑁𝑀) · (𝑁C𝑀)) ∈ ℂ)
561nnne0d 12243 . . . . . . 7 (𝜑𝑀 ≠ 0)
5755, 2, 56divcan3d 11970 . . . . . 6 (𝜑 → ((𝑀 · ((𝑁𝑀) · (𝑁C𝑀))) / 𝑀) = ((𝑁𝑀) · (𝑁C𝑀)))
5854, 57eqtr4d 2768 . . . . 5 (𝜑 → (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = ((𝑀 · ((𝑁𝑀) · (𝑁C𝑀))) / 𝑀))
592, 43, 41mul12d 11390 . . . . . 6 (𝜑 → (𝑀 · ((𝑁𝑀) · (𝑁C𝑀))) = ((𝑁𝑀) · (𝑀 · (𝑁C𝑀))))
6059oveq1d 7405 . . . . 5 (𝜑 → ((𝑀 · ((𝑁𝑀) · (𝑁C𝑀))) / 𝑀) = (((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) / 𝑀))
6158, 60eqtrd 2765 . . . 4 (𝜑 → (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = (((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) / 𝑀))
62 0ne1 12264 . . . . . . 7 0 ≠ 1
6362a1i 11 . . . . . 6 (𝜑 → 0 ≠ 1)
6463necomd 2981 . . . . 5 (𝜑 → 1 ≠ 0)
6516nnne0d 12243 . . . . . 6 (𝜑 → (𝑁C(𝑀 + 1)) ≠ 0)
664, 17, 44, 65mulne0d 11837 . . . . 5 (𝜑 → ((𝑀 + 1) · (𝑁C(𝑀 + 1))) ≠ 0)
672, 41mulcld 11201 . . . . . 6 (𝜑 → (𝑀 · (𝑁C𝑀)) ∈ ℂ)
6843, 67mulcld 11201 . . . . 5 (𝜑 → ((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) ∈ ℂ)
6937, 10gtned 11316 . . . . . . 7 (𝜑𝑁𝑀)
7042, 2, 69subne0d 11549 . . . . . 6 (𝜑 → (𝑁𝑀) ≠ 0)
7140nnne0d 12243 . . . . . . 7 (𝜑 → (𝑁C𝑀) ≠ 0)
722, 41, 56, 71mulne0d 11837 . . . . . 6 (𝜑 → (𝑀 · (𝑁C𝑀)) ≠ 0)
7343, 67, 70, 72mulne0d 11837 . . . . 5 (𝜑 → ((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) ≠ 0)
743, 64, 18, 66, 2, 56, 68, 73recbothd 41987 . . . 4 (𝜑 → ((1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = (𝑀 / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))) ↔ (((𝑀 + 1) · (𝑁C(𝑀 + 1))) / 1) = (((𝑁𝑀) · (𝑀 · (𝑁C𝑀))) / 𝑀)))
7561, 74mpbird 257 . . 3 (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = (𝑀 / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))))
762mulridd 11198 . . . 4 (𝜑 → (𝑀 · 1) = 𝑀)
7776oveq1d 7405 . . 3 (𝜑 → ((𝑀 · 1) / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))) = (𝑀 / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))))
7875, 77eqtr4d 2768 . 2 (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = ((𝑀 · 1) / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))))
792, 43, 3, 67, 70, 72divmuldivd 12006 . 2 (𝜑 → ((𝑀 / (𝑁𝑀)) · (1 / (𝑀 · (𝑁C𝑀)))) = ((𝑀 · 1) / ((𝑁𝑀) · (𝑀 · (𝑁C𝑀)))))
8078, 79eqtr4d 2768 1 (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = ((𝑀 / (𝑁𝑀)) · (1 / (𝑀 · (𝑁C𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  ...cfz 13475  Ccbc 14274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-seq 13974  df-fac 14246  df-bc 14275
This theorem is referenced by:  lcmineqlem13  42036
  Copyright terms: Public domain W3C validator