Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblspltprt Structured version   Visualization version   GIF version

Theorem iblspltprt 42608
 Description: If a function is integrable on any interval of a partition, then it is integrable on the whole interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iblspltprt.1 𝑡𝜑
iblspltprt.2 (𝜑𝑀 ∈ ℤ)
iblspltprt.3 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
iblspltprt.4 ((𝜑𝑖 ∈ (𝑀...𝑁)) → (𝑃𝑖) ∈ ℝ)
iblspltprt.5 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑃𝑖) < (𝑃‘(𝑖 + 1)))
iblspltprt.6 ((𝜑𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑁))) → 𝐴 ∈ ℂ)
iblspltprt.7 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑡 ∈ ((𝑃𝑖)[,](𝑃‘(𝑖 + 1))) ↦ 𝐴) ∈ 𝐿1)
Assertion
Ref Expression
iblspltprt (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑁)) ↦ 𝐴) ∈ 𝐿1)
Distinct variable groups:   𝐴,𝑖   𝑖,𝑀,𝑡   𝑖,𝑁,𝑡   𝑃,𝑖,𝑡   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)

Proof of Theorem iblspltprt
Dummy variables 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iblspltprt.3 . . . 4 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
2 eluzelz 12245 . . . 4 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → 𝑁 ∈ ℤ)
31, 2syl 17 . . 3 (𝜑𝑁 ∈ ℤ)
4 eluzle 12248 . . . 4 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑀 + 1) ≤ 𝑁)
51, 4syl 17 . . 3 (𝜑 → (𝑀 + 1) ≤ 𝑁)
63zred 12079 . . . 4 (𝜑𝑁 ∈ ℝ)
76leidd 11199 . . 3 (𝜑𝑁𝑁)
8 iblspltprt.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
98peano2zd 12082 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℤ)
10 elfz1 12894 . . . 4 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁𝑁𝑁)))
119, 3, 10syl2anc 587 . . 3 (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁𝑁𝑁)))
123, 5, 7, 11mpbir3and 1339 . 2 (𝜑𝑁 ∈ ((𝑀 + 1)...𝑁))
13 fveq2 6649 . . . . . . 7 (𝑗 = (𝑀 + 1) → (𝑃𝑗) = (𝑃‘(𝑀 + 1)))
1413oveq2d 7155 . . . . . 6 (𝑗 = (𝑀 + 1) → ((𝑃𝑀)[,](𝑃𝑗)) = ((𝑃𝑀)[,](𝑃‘(𝑀 + 1))))
1514mpteq1d 5122 . . . . 5 (𝑗 = (𝑀 + 1) → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑗)) ↦ 𝐴) = (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑀 + 1))) ↦ 𝐴))
1615eleq1d 2877 . . . 4 (𝑗 = (𝑀 + 1) → ((𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑗)) ↦ 𝐴) ∈ 𝐿1 ↔ (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑀 + 1))) ↦ 𝐴) ∈ 𝐿1))
1716imbi2d 344 . . 3 (𝑗 = (𝑀 + 1) → ((𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑗)) ↦ 𝐴) ∈ 𝐿1) ↔ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑀 + 1))) ↦ 𝐴) ∈ 𝐿1)))
18 fveq2 6649 . . . . . . 7 (𝑗 = 𝑘 → (𝑃𝑗) = (𝑃𝑘))
1918oveq2d 7155 . . . . . 6 (𝑗 = 𝑘 → ((𝑃𝑀)[,](𝑃𝑗)) = ((𝑃𝑀)[,](𝑃𝑘)))
2019mpteq1d 5122 . . . . 5 (𝑗 = 𝑘 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑗)) ↦ 𝐴) = (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴))
2120eleq1d 2877 . . . 4 (𝑗 = 𝑘 → ((𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑗)) ↦ 𝐴) ∈ 𝐿1 ↔ (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1))
2221imbi2d 344 . . 3 (𝑗 = 𝑘 → ((𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑗)) ↦ 𝐴) ∈ 𝐿1) ↔ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1)))
23 fveq2 6649 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑃𝑗) = (𝑃‘(𝑘 + 1)))
2423oveq2d 7155 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝑃𝑀)[,](𝑃𝑗)) = ((𝑃𝑀)[,](𝑃‘(𝑘 + 1))))
2524mpteq1d 5122 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑗)) ↦ 𝐴) = (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1))) ↦ 𝐴))
2625eleq1d 2877 . . . 4 (𝑗 = (𝑘 + 1) → ((𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑗)) ↦ 𝐴) ∈ 𝐿1 ↔ (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1))) ↦ 𝐴) ∈ 𝐿1))
2726imbi2d 344 . . 3 (𝑗 = (𝑘 + 1) → ((𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑗)) ↦ 𝐴) ∈ 𝐿1) ↔ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1))) ↦ 𝐴) ∈ 𝐿1)))
28 fveq2 6649 . . . . . . 7 (𝑗 = 𝑁 → (𝑃𝑗) = (𝑃𝑁))
2928oveq2d 7155 . . . . . 6 (𝑗 = 𝑁 → ((𝑃𝑀)[,](𝑃𝑗)) = ((𝑃𝑀)[,](𝑃𝑁)))
3029mpteq1d 5122 . . . . 5 (𝑗 = 𝑁 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑗)) ↦ 𝐴) = (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑁)) ↦ 𝐴))
3130eleq1d 2877 . . . 4 (𝑗 = 𝑁 → ((𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑗)) ↦ 𝐴) ∈ 𝐿1 ↔ (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑁)) ↦ 𝐴) ∈ 𝐿1))
3231imbi2d 344 . . 3 (𝑗 = 𝑁 → ((𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑗)) ↦ 𝐴) ∈ 𝐿1) ↔ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑁)) ↦ 𝐴) ∈ 𝐿1)))
33 uzid 12250 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
348, 33syl 17 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑀))
358zred 12079 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
36 1red 10635 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
3735, 36readdcld 10663 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℝ)
3835ltp1d 11563 . . . . . . 7 (𝜑𝑀 < (𝑀 + 1))
3935, 37, 6, 38, 5ltletrd 10793 . . . . . 6 (𝜑𝑀 < 𝑁)
40 elfzo2 13040 . . . . . 6 (𝑀 ∈ (𝑀..^𝑁) ↔ (𝑀 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
4134, 3, 39, 40syl3anbrc 1340 . . . . 5 (𝜑𝑀 ∈ (𝑀..^𝑁))
42 fveq2 6649 . . . . . . . . . 10 (𝑖 = 𝑀 → (𝑃𝑖) = (𝑃𝑀))
43 fvoveq1 7162 . . . . . . . . . 10 (𝑖 = 𝑀 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝑀 + 1)))
4442, 43oveq12d 7157 . . . . . . . . 9 (𝑖 = 𝑀 → ((𝑃𝑖)[,](𝑃‘(𝑖 + 1))) = ((𝑃𝑀)[,](𝑃‘(𝑀 + 1))))
4544mpteq1d 5122 . . . . . . . 8 (𝑖 = 𝑀 → (𝑡 ∈ ((𝑃𝑖)[,](𝑃‘(𝑖 + 1))) ↦ 𝐴) = (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑀 + 1))) ↦ 𝐴))
4645eleq1d 2877 . . . . . . 7 (𝑖 = 𝑀 → ((𝑡 ∈ ((𝑃𝑖)[,](𝑃‘(𝑖 + 1))) ↦ 𝐴) ∈ 𝐿1 ↔ (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑀 + 1))) ↦ 𝐴) ∈ 𝐿1))
4746imbi2d 344 . . . . . 6 (𝑖 = 𝑀 → ((𝜑 → (𝑡 ∈ ((𝑃𝑖)[,](𝑃‘(𝑖 + 1))) ↦ 𝐴) ∈ 𝐿1) ↔ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑀 + 1))) ↦ 𝐴) ∈ 𝐿1)))
48 iblspltprt.7 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑡 ∈ ((𝑃𝑖)[,](𝑃‘(𝑖 + 1))) ↦ 𝐴) ∈ 𝐿1)
4948expcom 417 . . . . . 6 (𝑖 ∈ (𝑀..^𝑁) → (𝜑 → (𝑡 ∈ ((𝑃𝑖)[,](𝑃‘(𝑖 + 1))) ↦ 𝐴) ∈ 𝐿1))
5047, 49vtoclga 3525 . . . . 5 (𝑀 ∈ (𝑀..^𝑁) → (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑀 + 1))) ↦ 𝐴) ∈ 𝐿1))
5141, 50mpcom 38 . . . 4 (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑀 + 1))) ↦ 𝐴) ∈ 𝐿1)
5251a1i 11 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑀 + 1))) ↦ 𝐴) ∈ 𝐿1))
53 nfv 1915 . . . . . 6 𝑡 𝑘 ∈ ((𝑀 + 1)..^𝑁)
54 iblspltprt.1 . . . . . . 7 𝑡𝜑
55 nfmpt1 5131 . . . . . . . 8 𝑡(𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴)
5655nfel1 2974 . . . . . . 7 𝑡(𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1
5754, 56nfim 1897 . . . . . 6 𝑡(𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1)
5853, 57, 54nf3an 1902 . . . . 5 𝑡(𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1) ∧ 𝜑)
59 simp3 1135 . . . . . 6 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1) ∧ 𝜑) → 𝜑)
60 simp1 1133 . . . . . 6 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1) ∧ 𝜑) → 𝑘 ∈ ((𝑀 + 1)..^𝑁))
6135leidd 11199 . . . . . . . . . . . . 13 (𝜑𝑀𝑀)
6235, 6, 39ltled 10781 . . . . . . . . . . . . 13 (𝜑𝑀𝑁)
63 elfz1 12894 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (𝑀...𝑁) ↔ (𝑀 ∈ ℤ ∧ 𝑀𝑀𝑀𝑁)))
648, 3, 63syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → (𝑀 ∈ (𝑀...𝑁) ↔ (𝑀 ∈ ℤ ∧ 𝑀𝑀𝑀𝑁)))
658, 61, 62, 64mpbir3and 1339 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (𝑀...𝑁))
6665ancli 552 . . . . . . . . . . . 12 (𝜑 → (𝜑𝑀 ∈ (𝑀...𝑁)))
67 eleq1 2880 . . . . . . . . . . . . . . 15 (𝑖 = 𝑀 → (𝑖 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁)))
6867anbi2d 631 . . . . . . . . . . . . . 14 (𝑖 = 𝑀 → ((𝜑𝑖 ∈ (𝑀...𝑁)) ↔ (𝜑𝑀 ∈ (𝑀...𝑁))))
6942eleq1d 2877 . . . . . . . . . . . . . 14 (𝑖 = 𝑀 → ((𝑃𝑖) ∈ ℝ ↔ (𝑃𝑀) ∈ ℝ))
7068, 69imbi12d 348 . . . . . . . . . . . . 13 (𝑖 = 𝑀 → (((𝜑𝑖 ∈ (𝑀...𝑁)) → (𝑃𝑖) ∈ ℝ) ↔ ((𝜑𝑀 ∈ (𝑀...𝑁)) → (𝑃𝑀) ∈ ℝ)))
71 iblspltprt.4 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀...𝑁)) → (𝑃𝑖) ∈ ℝ)
7270, 71vtoclg 3518 . . . . . . . . . . . 12 (𝑀 ∈ (𝑀...𝑁) → ((𝜑𝑀 ∈ (𝑀...𝑁)) → (𝑃𝑀) ∈ ℝ))
7365, 66, 72sylc 65 . . . . . . . . . . 11 (𝜑 → (𝑃𝑀) ∈ ℝ)
7473adantr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑃𝑀) ∈ ℝ)
7574rexrd 10684 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑃𝑀) ∈ ℝ*)
76 simpl 486 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝜑)
77 elfzoelz 13037 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → 𝑘 ∈ ℤ)
7877adantl 485 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑘 ∈ ℤ)
7935adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑀 ∈ ℝ)
8078zred 12079 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑘 ∈ ℝ)
8137adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑀 + 1) ∈ ℝ)
8238adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑀 < (𝑀 + 1))
83 elfzole1 13045 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → (𝑀 + 1) ≤ 𝑘)
8483adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑀 + 1) ≤ 𝑘)
8579, 81, 80, 82, 84ltletrd 10793 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑀 < 𝑘)
8679, 80, 85ltled 10781 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑀𝑘)
876adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑁 ∈ ℝ)
88 elfzolt2 13046 . . . . . . . . . . . . . 14 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → 𝑘 < 𝑁)
8988adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑘 < 𝑁)
9080, 87, 89ltled 10781 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑘𝑁)
918, 3jca 515 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
9291adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
93 elfz1 12894 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁)))
9492, 93syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁)))
9578, 86, 90, 94mpbir3and 1339 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑘 ∈ (𝑀...𝑁))
96 eleq1 2880 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝑖 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ (𝑀...𝑁)))
9796anbi2d 631 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → ((𝜑𝑖 ∈ (𝑀...𝑁)) ↔ (𝜑𝑘 ∈ (𝑀...𝑁))))
98 fveq2 6649 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝑃𝑖) = (𝑃𝑘))
9998eleq1d 2877 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → ((𝑃𝑖) ∈ ℝ ↔ (𝑃𝑘) ∈ ℝ))
10097, 99imbi12d 348 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (((𝜑𝑖 ∈ (𝑀...𝑁)) → (𝑃𝑖) ∈ ℝ) ↔ ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝑃𝑘) ∈ ℝ)))
101100, 71chvarvv 2005 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝑃𝑘) ∈ ℝ)
10276, 95, 101syl2anc 587 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑃𝑘) ∈ ℝ)
103102rexrd 10684 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑃𝑘) ∈ ℝ*)
10478peano2zd 12082 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑘 + 1) ∈ ℤ)
105104zred 12079 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑘 + 1) ∈ ℝ)
106 1red 10635 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 1 ∈ ℝ)
10779, 80, 106, 85ltadd1dd 11244 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑀 + 1) < (𝑘 + 1))
10879, 81, 105, 82, 107lttrd 10794 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑀 < (𝑘 + 1))
10979, 105, 108ltled 10781 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑀 ≤ (𝑘 + 1))
110 zltp1le 12024 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 < 𝑁 ↔ (𝑘 + 1) ≤ 𝑁))
11177, 3, 110syl2anr 599 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑘 < 𝑁 ↔ (𝑘 + 1) ≤ 𝑁))
11289, 111mpbid 235 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑘 + 1) ≤ 𝑁)
113 elfz1 12894 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑘 + 1) ∈ (𝑀...𝑁) ↔ ((𝑘 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≤ 𝑁)))
11492, 113syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → ((𝑘 + 1) ∈ (𝑀...𝑁) ↔ ((𝑘 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≤ 𝑁)))
115104, 109, 112, 114mpbir3and 1339 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁))
11676, 115jca 515 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁)))
117 eleq1 2880 . . . . . . . . . . . . . 14 (𝑖 = (𝑘 + 1) → (𝑖 ∈ (𝑀...𝑁) ↔ (𝑘 + 1) ∈ (𝑀...𝑁)))
118117anbi2d 631 . . . . . . . . . . . . 13 (𝑖 = (𝑘 + 1) → ((𝜑𝑖 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁))))
119 fveq2 6649 . . . . . . . . . . . . . 14 (𝑖 = (𝑘 + 1) → (𝑃𝑖) = (𝑃‘(𝑘 + 1)))
120119eleq1d 2877 . . . . . . . . . . . . 13 (𝑖 = (𝑘 + 1) → ((𝑃𝑖) ∈ ℝ ↔ (𝑃‘(𝑘 + 1)) ∈ ℝ))
121118, 120imbi12d 348 . . . . . . . . . . . 12 (𝑖 = (𝑘 + 1) → (((𝜑𝑖 ∈ (𝑀...𝑁)) → (𝑃𝑖) ∈ ℝ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝑃‘(𝑘 + 1)) ∈ ℝ)))
122121, 71vtoclg 3518 . . . . . . . . . . 11 ((𝑘 + 1) ∈ (𝑀...𝑁) → ((𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝑃‘(𝑘 + 1)) ∈ ℝ))
123115, 116, 122sylc 65 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑃‘(𝑘 + 1)) ∈ ℝ)
124123rexrd 10684 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑃‘(𝑘 + 1)) ∈ ℝ*)
125 eluz 12249 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑀) ↔ 𝑀𝑘))
1268, 77, 125syl2an 598 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑘 ∈ (ℤ𝑀) ↔ 𝑀𝑘))
12786, 126mpbird 260 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑘 ∈ (ℤ𝑀))
128 simpll 766 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...𝑘)) → 𝜑)
129 elfzelz 12906 . . . . . . . . . . . . 13 (𝑖 ∈ (𝑀...𝑘) → 𝑖 ∈ ℤ)
130129adantl 485 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...𝑘)) → 𝑖 ∈ ℤ)
131 elfzle1 12909 . . . . . . . . . . . . 13 (𝑖 ∈ (𝑀...𝑘) → 𝑀𝑖)
132131adantl 485 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...𝑘)) → 𝑀𝑖)
133130zred 12079 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...𝑘)) → 𝑖 ∈ ℝ)
134128, 6syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...𝑘)) → 𝑁 ∈ ℝ)
13580adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...𝑘)) → 𝑘 ∈ ℝ)
136 elfzle2 12910 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀...𝑘) → 𝑖𝑘)
137136adantl 485 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...𝑘)) → 𝑖𝑘)
13889adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...𝑘)) → 𝑘 < 𝑁)
139133, 135, 134, 137, 138lelttrd 10791 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...𝑘)) → 𝑖 < 𝑁)
140133, 134, 139ltled 10781 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...𝑘)) → 𝑖𝑁)
141 elfz1 12894 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (𝑀...𝑁) ↔ (𝑖 ∈ ℤ ∧ 𝑀𝑖𝑖𝑁)))
142128, 91, 1413syl 18 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...𝑘)) → (𝑖 ∈ (𝑀...𝑁) ↔ (𝑖 ∈ ℤ ∧ 𝑀𝑖𝑖𝑁)))
143130, 132, 140, 142mpbir3and 1339 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...𝑘)) → 𝑖 ∈ (𝑀...𝑁))
144128, 143, 71syl2anc 587 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...𝑘)) → (𝑃𝑖) ∈ ℝ)
145 simpll 766 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → 𝜑)
146 elfzelz 12906 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑀...(𝑘 − 1)) → 𝑖 ∈ ℤ)
147146adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → 𝑖 ∈ ℤ)
148 elfzle1 12909 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑀...(𝑘 − 1)) → 𝑀𝑖)
149148adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → 𝑀𝑖)
150147zred 12079 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → 𝑖 ∈ ℝ)
151145, 6syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → 𝑁 ∈ ℝ)
15280adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → 𝑘 ∈ ℝ)
153 1red 10635 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → 1 ∈ ℝ)
154152, 153resubcld 11061 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → (𝑘 − 1) ∈ ℝ)
155 elfzle2 12910 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀...(𝑘 − 1)) → 𝑖 ≤ (𝑘 − 1))
156155adantl 485 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → 𝑖 ≤ (𝑘 − 1))
15777zred 12079 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → 𝑘 ∈ ℝ)
158 1red 10635 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → 1 ∈ ℝ)
159157, 158resubcld 11061 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → (𝑘 − 1) ∈ ℝ)
160 elfzoel2 13036 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → 𝑁 ∈ ℤ)
161160zred 12079 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → 𝑁 ∈ ℝ)
162157ltm1d 11565 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → (𝑘 − 1) < 𝑘)
163159, 157, 161, 162, 88lttrd 10794 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → (𝑘 − 1) < 𝑁)
164163ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → (𝑘 − 1) < 𝑁)
165150, 154, 151, 156, 164lelttrd 10791 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → 𝑖 < 𝑁)
166150, 151, 165ltled 10781 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → 𝑖𝑁)
167145, 91, 1413syl 18 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → (𝑖 ∈ (𝑀...𝑁) ↔ (𝑖 ∈ ℤ ∧ 𝑀𝑖𝑖𝑁)))
168147, 149, 166, 167mpbir3and 1339 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → 𝑖 ∈ (𝑀...𝑁))
169145, 168, 71syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → (𝑃𝑖) ∈ ℝ)
170147peano2zd 12082 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → (𝑖 + 1) ∈ ℤ)
171 elfzel1 12905 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀...(𝑘 − 1)) → 𝑀 ∈ ℤ)
172171zred 12079 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀...(𝑘 − 1)) → 𝑀 ∈ ℝ)
173146zred 12079 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀...(𝑘 − 1)) → 𝑖 ∈ ℝ)
174 1red 10635 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀...(𝑘 − 1)) → 1 ∈ ℝ)
175173, 174readdcld 10663 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀...(𝑘 − 1)) → (𝑖 + 1) ∈ ℝ)
176173ltp1d 11563 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀...(𝑘 − 1)) → 𝑖 < (𝑖 + 1))
177172, 173, 175, 148, 176lelttrd 10791 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀...(𝑘 − 1)) → 𝑀 < (𝑖 + 1))
178172, 175, 177ltled 10781 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑀...(𝑘 − 1)) → 𝑀 ≤ (𝑖 + 1))
179178adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → 𝑀 ≤ (𝑖 + 1))
180145, 1, 23syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → 𝑁 ∈ ℤ)
181 zltp1le 12024 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 < 𝑁 ↔ (𝑖 + 1) ≤ 𝑁))
182147, 180, 181syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → (𝑖 < 𝑁 ↔ (𝑖 + 1) ≤ 𝑁))
183165, 182mpbid 235 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → (𝑖 + 1) ≤ 𝑁)
184 elfz1 12894 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 1) ∈ (𝑀...𝑁) ↔ ((𝑖 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑖 + 1) ∧ (𝑖 + 1) ≤ 𝑁)))
185145, 91, 1843syl 18 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → ((𝑖 + 1) ∈ (𝑀...𝑁) ↔ ((𝑖 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑖 + 1) ∧ (𝑖 + 1) ≤ 𝑁)))
186170, 179, 183, 185mpbir3and 1339 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → (𝑖 + 1) ∈ (𝑀...𝑁))
187145, 186jca 515 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → (𝜑 ∧ (𝑖 + 1) ∈ (𝑀...𝑁)))
188 eleq1 2880 . . . . . . . . . . . . . . 15 (𝑘 = (𝑖 + 1) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑖 + 1) ∈ (𝑀...𝑁)))
189188anbi2d 631 . . . . . . . . . . . . . 14 (𝑘 = (𝑖 + 1) → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ (𝑖 + 1) ∈ (𝑀...𝑁))))
190 fveq2 6649 . . . . . . . . . . . . . . 15 (𝑘 = (𝑖 + 1) → (𝑃𝑘) = (𝑃‘(𝑖 + 1)))
191190eleq1d 2877 . . . . . . . . . . . . . 14 (𝑘 = (𝑖 + 1) → ((𝑃𝑘) ∈ ℝ ↔ (𝑃‘(𝑖 + 1)) ∈ ℝ))
192189, 191imbi12d 348 . . . . . . . . . . . . 13 (𝑘 = (𝑖 + 1) → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝑃𝑘) ∈ ℝ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ (𝑀...𝑁)) → (𝑃‘(𝑖 + 1)) ∈ ℝ)))
193192, 101vtoclg 3518 . . . . . . . . . . . 12 ((𝑖 + 1) ∈ (𝑀...𝑁) → ((𝜑 ∧ (𝑖 + 1) ∈ (𝑀...𝑁)) → (𝑃‘(𝑖 + 1)) ∈ ℝ))
194186, 187, 193sylc 65 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → (𝑃‘(𝑖 + 1)) ∈ ℝ)
195 elfzuz 12902 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑀...(𝑘 − 1)) → 𝑖 ∈ (ℤ𝑀))
196195adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → 𝑖 ∈ (ℤ𝑀))
197 elfzo2 13040 . . . . . . . . . . . . 13 (𝑖 ∈ (𝑀..^𝑁) ↔ (𝑖 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑖 < 𝑁))
198196, 180, 165, 197syl3anbrc 1340 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → 𝑖 ∈ (𝑀..^𝑁))
199 iblspltprt.5 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑃𝑖) < (𝑃‘(𝑖 + 1)))
200145, 198, 199syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → (𝑃𝑖) < (𝑃‘(𝑖 + 1)))
201169, 194, 200ltled 10781 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ (𝑀...(𝑘 − 1))) → (𝑃𝑖) ≤ (𝑃‘(𝑖 + 1)))
202127, 144, 201monoord 13400 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑃𝑀) ≤ (𝑃𝑘))
203160adantl 485 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑁 ∈ ℤ)
204 elfzo2 13040 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀..^𝑁) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑘 < 𝑁))
205127, 203, 89, 204syl3anbrc 1340 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑘 ∈ (𝑀..^𝑁))
206 eleq1 2880 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝑖 ∈ (𝑀..^𝑁) ↔ 𝑘 ∈ (𝑀..^𝑁)))
207206anbi2d 631 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → ((𝜑𝑖 ∈ (𝑀..^𝑁)) ↔ (𝜑𝑘 ∈ (𝑀..^𝑁))))
208 fvoveq1 7162 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝑘 + 1)))
20998, 208breq12d 5046 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → ((𝑃𝑖) < (𝑃‘(𝑖 + 1)) ↔ (𝑃𝑘) < (𝑃‘(𝑘 + 1))))
210207, 209imbi12d 348 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑃𝑖) < (𝑃‘(𝑖 + 1))) ↔ ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑃𝑘) < (𝑃‘(𝑘 + 1)))))
211210, 199chvarvv 2005 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑃𝑘) < (𝑃‘(𝑘 + 1)))
21276, 205, 211syl2anc 587 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑃𝑘) < (𝑃‘(𝑘 + 1)))
213102, 123, 212ltled 10781 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑃𝑘) ≤ (𝑃‘(𝑘 + 1)))
214 iccintsng 42153 . . . . . . . . 9 ((((𝑃𝑀) ∈ ℝ* ∧ (𝑃𝑘) ∈ ℝ* ∧ (𝑃‘(𝑘 + 1)) ∈ ℝ*) ∧ ((𝑃𝑀) ≤ (𝑃𝑘) ∧ (𝑃𝑘) ≤ (𝑃‘(𝑘 + 1)))) → (((𝑃𝑀)[,](𝑃𝑘)) ∩ ((𝑃𝑘)[,](𝑃‘(𝑘 + 1)))) = {(𝑃𝑘)})
21575, 103, 124, 202, 213, 214syl32anc 1375 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (((𝑃𝑀)[,](𝑃𝑘)) ∩ ((𝑃𝑘)[,](𝑃‘(𝑘 + 1)))) = {(𝑃𝑘)})
216215fveq2d 6653 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (vol*‘(((𝑃𝑀)[,](𝑃𝑘)) ∩ ((𝑃𝑘)[,](𝑃‘(𝑘 + 1))))) = (vol*‘{(𝑃𝑘)}))
217 ovolsn 24103 . . . . . . . 8 ((𝑃𝑘) ∈ ℝ → (vol*‘{(𝑃𝑘)}) = 0)
218102, 217syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (vol*‘{(𝑃𝑘)}) = 0)
219216, 218eqtrd 2836 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (vol*‘(((𝑃𝑀)[,](𝑃𝑘)) ∩ ((𝑃𝑘)[,](𝑃‘(𝑘 + 1))))) = 0)
22059, 60, 219syl2anc 587 . . . . 5 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1) ∧ 𝜑) → (vol*‘(((𝑃𝑀)[,](𝑃𝑘)) ∩ ((𝑃𝑘)[,](𝑃‘(𝑘 + 1))))) = 0)
22174, 123, 102, 202, 213eliccd 42134 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑃𝑘) ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1))))
22274, 123, 2213jca 1125 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → ((𝑃𝑀) ∈ ℝ ∧ (𝑃‘(𝑘 + 1)) ∈ ℝ ∧ (𝑃𝑘) ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))))
22359, 60, 222syl2anc 587 . . . . . 6 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1) ∧ 𝜑) → ((𝑃𝑀) ∈ ℝ ∧ (𝑃‘(𝑘 + 1)) ∈ ℝ ∧ (𝑃𝑘) ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))))
224 iccsplit 12867 . . . . . 6 (((𝑃𝑀) ∈ ℝ ∧ (𝑃‘(𝑘 + 1)) ∈ ℝ ∧ (𝑃𝑘) ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → ((𝑃𝑀)[,](𝑃‘(𝑘 + 1))) = (((𝑃𝑀)[,](𝑃𝑘)) ∪ ((𝑃𝑘)[,](𝑃‘(𝑘 + 1)))))
225223, 224syl 17 . . . . 5 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1) ∧ 𝜑) → ((𝑃𝑀)[,](𝑃‘(𝑘 + 1))) = (((𝑃𝑀)[,](𝑃𝑘)) ∪ ((𝑃𝑘)[,](𝑃‘(𝑘 + 1)))))
226 simpl3 1190 . . . . . 6 (((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1) ∧ 𝜑) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → 𝜑)
227 simpl1 1188 . . . . . 6 (((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1) ∧ 𝜑) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → 𝑘 ∈ ((𝑀 + 1)..^𝑁))
228 simpr 488 . . . . . 6 (((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1) ∧ 𝜑) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1))))
229 simp1 1133 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → 𝜑)
230 eliccxr 12817 . . . . . . . . 9 (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1))) → 𝑡 ∈ ℝ*)
2312303ad2ant3 1132 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → 𝑡 ∈ ℝ*)
23273rexrd 10684 . . . . . . . . . 10 (𝜑 → (𝑃𝑀) ∈ ℝ*)
2332323ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → (𝑃𝑀) ∈ ℝ*)
2341243adant3 1129 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → (𝑃‘(𝑘 + 1)) ∈ ℝ*)
235 simp3 1135 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1))))
236 iccgelb 12785 . . . . . . . . 9 (((𝑃𝑀) ∈ ℝ* ∧ (𝑃‘(𝑘 + 1)) ∈ ℝ*𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → (𝑃𝑀) ≤ 𝑡)
237233, 234, 235, 236syl3anc 1368 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → (𝑃𝑀) ≤ 𝑡)
23874, 123jca 515 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → ((𝑃𝑀) ∈ ℝ ∧ (𝑃‘(𝑘 + 1)) ∈ ℝ))
2392383adant3 1129 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → ((𝑃𝑀) ∈ ℝ ∧ (𝑃‘(𝑘 + 1)) ∈ ℝ))
240 iccssre 12811 . . . . . . . . . . 11 (((𝑃𝑀) ∈ ℝ ∧ (𝑃‘(𝑘 + 1)) ∈ ℝ) → ((𝑃𝑀)[,](𝑃‘(𝑘 + 1))) ⊆ ℝ)
241240sseld 3917 . . . . . . . . . 10 (((𝑃𝑀) ∈ ℝ ∧ (𝑃‘(𝑘 + 1)) ∈ ℝ) → (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1))) → 𝑡 ∈ ℝ))
242239, 235, 241sylc 65 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → 𝑡 ∈ ℝ)
2431233adant3 1129 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → (𝑃‘(𝑘 + 1)) ∈ ℝ)
244 elfz1 12894 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (𝑀...𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)))
2458, 3, 244syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ∈ (𝑀...𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)))
2463, 62, 7, 245mpbir3and 1339 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (𝑀...𝑁))
247246ancli 552 . . . . . . . . . . 11 (𝜑 → (𝜑𝑁 ∈ (𝑀...𝑁)))
248 eleq1 2880 . . . . . . . . . . . . . 14 (𝑖 = 𝑁 → (𝑖 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
249248anbi2d 631 . . . . . . . . . . . . 13 (𝑖 = 𝑁 → ((𝜑𝑖 ∈ (𝑀...𝑁)) ↔ (𝜑𝑁 ∈ (𝑀...𝑁))))
250 fveq2 6649 . . . . . . . . . . . . . 14 (𝑖 = 𝑁 → (𝑃𝑖) = (𝑃𝑁))
251250eleq1d 2877 . . . . . . . . . . . . 13 (𝑖 = 𝑁 → ((𝑃𝑖) ∈ ℝ ↔ (𝑃𝑁) ∈ ℝ))
252249, 251imbi12d 348 . . . . . . . . . . . 12 (𝑖 = 𝑁 → (((𝜑𝑖 ∈ (𝑀...𝑁)) → (𝑃𝑖) ∈ ℝ) ↔ ((𝜑𝑁 ∈ (𝑀...𝑁)) → (𝑃𝑁) ∈ ℝ)))
253252, 71vtoclg 3518 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝜑𝑁 ∈ (𝑀...𝑁)) → (𝑃𝑁) ∈ ℝ))
2543, 247, 253sylc 65 . . . . . . . . . 10 (𝜑 → (𝑃𝑁) ∈ ℝ)
2552543ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → (𝑃𝑁) ∈ ℝ)
256 elicc1 12774 . . . . . . . . . . . 12 (((𝑃𝑀) ∈ ℝ* ∧ (𝑃‘(𝑘 + 1)) ∈ ℝ*) → (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1))) ↔ (𝑡 ∈ ℝ* ∧ (𝑃𝑀) ≤ 𝑡𝑡 ≤ (𝑃‘(𝑘 + 1)))))
257233, 234, 256syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1))) ↔ (𝑡 ∈ ℝ* ∧ (𝑃𝑀) ≤ 𝑡𝑡 ≤ (𝑃‘(𝑘 + 1)))))
258235, 257mpbid 235 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → (𝑡 ∈ ℝ* ∧ (𝑃𝑀) ≤ 𝑡𝑡 ≤ (𝑃‘(𝑘 + 1))))
259258simp3d 1141 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → 𝑡 ≤ (𝑃‘(𝑘 + 1)))
260 elfzop1le2 41914 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → (𝑘 + 1) ≤ 𝑁)
26177peano2zd 12082 . . . . . . . . . . . . . 14 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → (𝑘 + 1) ∈ ℤ)
262 eluz 12249 . . . . . . . . . . . . . 14 (((𝑘 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘(𝑘 + 1)) ↔ (𝑘 + 1) ≤ 𝑁))
263261, 160, 262syl2anc 587 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → (𝑁 ∈ (ℤ‘(𝑘 + 1)) ↔ (𝑘 + 1) ≤ 𝑁))
264260, 263mpbird 260 . . . . . . . . . . . 12 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → 𝑁 ∈ (ℤ‘(𝑘 + 1)))
265264adantl 485 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑁 ∈ (ℤ‘(𝑘 + 1)))
266 simpll 766 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → 𝜑)
267 elfzelz 12906 . . . . . . . . . . . . . 14 (𝑖 ∈ ((𝑘 + 1)...𝑁) → 𝑖 ∈ ℤ)
268267adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → 𝑖 ∈ ℤ)
269266, 35syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → 𝑀 ∈ ℝ)
270268zred 12079 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → 𝑖 ∈ ℝ)
27180adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → 𝑘 ∈ ℝ)
27285adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → 𝑀 < 𝑘)
273157adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → 𝑘 ∈ ℝ)
274 1red 10635 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → 1 ∈ ℝ)
275273, 274readdcld 10663 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → (𝑘 + 1) ∈ ℝ)
276267zred 12079 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ((𝑘 + 1)...𝑁) → 𝑖 ∈ ℝ)
277276adantl 485 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → 𝑖 ∈ ℝ)
278273ltp1d 11563 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → 𝑘 < (𝑘 + 1))
279 elfzle1 12909 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ((𝑘 + 1)...𝑁) → (𝑘 + 1) ≤ 𝑖)
280279adantl 485 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → (𝑘 + 1) ≤ 𝑖)
281273, 275, 277, 278, 280ltletrd 10793 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → 𝑘 < 𝑖)
282281adantll 713 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → 𝑘 < 𝑖)
283269, 271, 270, 272, 282lttrd 10794 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → 𝑀 < 𝑖)
284269, 270, 283ltled 10781 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → 𝑀𝑖)
285 elfzle2 12910 . . . . . . . . . . . . . 14 (𝑖 ∈ ((𝑘 + 1)...𝑁) → 𝑖𝑁)
286285adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → 𝑖𝑁)
287266, 91, 1413syl 18 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → (𝑖 ∈ (𝑀...𝑁) ↔ (𝑖 ∈ ℤ ∧ 𝑀𝑖𝑖𝑁)))
288268, 284, 286, 287mpbir3and 1339 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → 𝑖 ∈ (𝑀...𝑁))
289266, 288, 71syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...𝑁)) → (𝑃𝑖) ∈ ℝ)
290 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝜑)
291 elfzelz 12906 . . . . . . . . . . . . . . 15 (𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1)) → 𝑖 ∈ ℤ)
292291adantl 485 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑖 ∈ ℤ)
293290, 35syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑀 ∈ ℝ)
294292zred 12079 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑖 ∈ ℝ)
29580adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑘 ∈ ℝ)
29685adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑀 < 𝑘)
297157adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑘 ∈ ℝ)
298 1red 10635 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 1 ∈ ℝ)
299297, 298readdcld 10663 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑘 + 1) ∈ ℝ)
300291zred 12079 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1)) → 𝑖 ∈ ℝ)
301300adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑖 ∈ ℝ)
302297ltp1d 11563 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑘 < (𝑘 + 1))
303 elfzle1 12909 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1)) → (𝑘 + 1) ≤ 𝑖)
304303adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑘 + 1) ≤ 𝑖)
305297, 299, 301, 302, 304ltletrd 10793 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑘 < 𝑖)
306305adantll 713 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑘 < 𝑖)
307293, 295, 294, 296, 306lttrd 10794 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑀 < 𝑖)
308293, 294, 307ltled 10781 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑀𝑖)
309300adantl 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑖 ∈ ℝ)
3106adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑁 ∈ ℝ)
311 1red 10635 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 1 ∈ ℝ)
312310, 311resubcld 11061 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ)
313 elfzle2 12910 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1)) → 𝑖 ≤ (𝑁 − 1))
314313adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑖 ≤ (𝑁 − 1))
315310ltm1d 11565 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑁 − 1) < 𝑁)
316309, 312, 310, 314, 315lelttrd 10791 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑖 < 𝑁)
317309, 310, 316ltled 10781 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑖𝑁)
318317adantlr 714 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑖𝑁)
319290, 91, 1413syl 18 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑖 ∈ (𝑀...𝑁) ↔ (𝑖 ∈ ℤ ∧ 𝑀𝑖𝑖𝑁)))
320292, 308, 318, 319mpbir3and 1339 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑖 ∈ (𝑀...𝑁))
321290, 320, 71syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑃𝑖) ∈ ℝ)
322292peano2zd 12082 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑖 + 1) ∈ ℤ)
323322zred 12079 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑖 + 1) ∈ ℝ)
324301, 298readdcld 10663 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑖 + 1) ∈ ℝ)
325297, 301, 305ltled 10781 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑘𝑖)
326297, 301, 298, 325leadd1dd 11247 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑘 + 1) ≤ (𝑖 + 1))
327297, 299, 324, 302, 326ltletrd 10793 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑘 < (𝑖 + 1))
328327adantll 713 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑘 < (𝑖 + 1))
329293, 295, 323, 296, 328lttrd 10794 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑀 < (𝑖 + 1))
330293, 323, 329ltled 10781 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑀 ≤ (𝑖 + 1))
331291, 3, 181syl2anr 599 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑖 < 𝑁 ↔ (𝑖 + 1) ≤ 𝑁))
332316, 331mpbid 235 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑖 + 1) ≤ 𝑁)
333332adantlr 714 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑖 + 1) ≤ 𝑁)
334290, 91, 1843syl 18 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → ((𝑖 + 1) ∈ (𝑀...𝑁) ↔ ((𝑖 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑖 + 1) ∧ (𝑖 + 1) ≤ 𝑁)))
335322, 330, 333, 334mpbir3and 1339 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑖 + 1) ∈ (𝑀...𝑁))
336290, 335jca 515 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝜑 ∧ (𝑖 + 1) ∈ (𝑀...𝑁)))
337335, 336, 193sylc 65 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑃‘(𝑖 + 1)) ∈ ℝ)
338290, 8syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑀 ∈ ℤ)
339 eluz 12249 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ∈ (ℤ𝑀) ↔ 𝑀𝑖))
340338, 292, 339syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑖 ∈ (ℤ𝑀) ↔ 𝑀𝑖))
341308, 340mpbird 260 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑖 ∈ (ℤ𝑀))
342290, 1, 23syl 18 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑁 ∈ ℤ)
343316adantlr 714 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑖 < 𝑁)
344341, 342, 343, 197syl3anbrc 1340 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → 𝑖 ∈ (𝑀..^𝑁))
345290, 344, 199syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑃𝑖) < (𝑃‘(𝑖 + 1)))
346321, 337, 345ltled 10781 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) ∧ 𝑖 ∈ ((𝑘 + 1)...(𝑁 − 1))) → (𝑃𝑖) ≤ (𝑃‘(𝑖 + 1)))
347265, 289, 346monoord 13400 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝑃‘(𝑘 + 1)) ≤ (𝑃𝑁))
3483473adant3 1129 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → (𝑃‘(𝑘 + 1)) ≤ (𝑃𝑁))
349242, 243, 255, 259, 348letrd 10790 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → 𝑡 ≤ (𝑃𝑁))
350255rexrd 10684 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → (𝑃𝑁) ∈ ℝ*)
351 elicc1 12774 . . . . . . . . 9 (((𝑃𝑀) ∈ ℝ* ∧ (𝑃𝑁) ∈ ℝ*) → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑁)) ↔ (𝑡 ∈ ℝ* ∧ (𝑃𝑀) ≤ 𝑡𝑡 ≤ (𝑃𝑁))))
352233, 350, 351syl2anc 587 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑁)) ↔ (𝑡 ∈ ℝ* ∧ (𝑃𝑀) ≤ 𝑡𝑡 ≤ (𝑃𝑁))))
353231, 237, 349, 352mpbir3and 1339 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → 𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑁)))
354 iblspltprt.6 . . . . . . 7 ((𝜑𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑁))) → 𝐴 ∈ ℂ)
355229, 353, 354syl2anc 587 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → 𝐴 ∈ ℂ)
356226, 227, 228, 355syl3anc 1368 . . . . 5 (((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1) ∧ 𝜑) ∧ 𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1)))) → 𝐴 ∈ ℂ)
357 simp2 1134 . . . . . 6 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1) ∧ 𝜑) → (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1))
35859, 357mpd 15 . . . . 5 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1) ∧ 𝜑) → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1)
35959, 60jca 515 . . . . . 6 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1) ∧ 𝜑) → (𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)))
36076, 205jca 515 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝜑𝑘 ∈ (𝑀..^𝑁)))
36198, 208oveq12d 7157 . . . . . . . . . 10 (𝑖 = 𝑘 → ((𝑃𝑖)[,](𝑃‘(𝑖 + 1))) = ((𝑃𝑘)[,](𝑃‘(𝑘 + 1))))
362361mpteq1d 5122 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑡 ∈ ((𝑃𝑖)[,](𝑃‘(𝑖 + 1))) ↦ 𝐴) = (𝑡 ∈ ((𝑃𝑘)[,](𝑃‘(𝑘 + 1))) ↦ 𝐴))
363362eleq1d 2877 . . . . . . . 8 (𝑖 = 𝑘 → ((𝑡 ∈ ((𝑃𝑖)[,](𝑃‘(𝑖 + 1))) ↦ 𝐴) ∈ 𝐿1 ↔ (𝑡 ∈ ((𝑃𝑘)[,](𝑃‘(𝑘 + 1))) ↦ 𝐴) ∈ 𝐿1))
364207, 363imbi12d 348 . . . . . . 7 (𝑖 = 𝑘 → (((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑡 ∈ ((𝑃𝑖)[,](𝑃‘(𝑖 + 1))) ↦ 𝐴) ∈ 𝐿1) ↔ ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑡 ∈ ((𝑃𝑘)[,](𝑃‘(𝑘 + 1))) ↦ 𝐴) ∈ 𝐿1)))
365364, 48chvarvv 2005 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑡 ∈ ((𝑃𝑘)[,](𝑃‘(𝑘 + 1))) ↦ 𝐴) ∈ 𝐿1)
366359, 360, 3653syl 18 . . . . 5 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1) ∧ 𝜑) → (𝑡 ∈ ((𝑃𝑘)[,](𝑃‘(𝑘 + 1))) ↦ 𝐴) ∈ 𝐿1)
36758, 220, 225, 356, 358, 366iblsplitf 42605 . . . 4 ((𝑘 ∈ ((𝑀 + 1)..^𝑁) ∧ (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1) ∧ 𝜑) → (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1))) ↦ 𝐴) ∈ 𝐿1)
3683673exp 1116 . . 3 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → ((𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑘)) ↦ 𝐴) ∈ 𝐿1) → (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃‘(𝑘 + 1))) ↦ 𝐴) ∈ 𝐿1)))
36917, 22, 27, 32, 52, 368fzind2 13154 . 2 (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑁)) ↦ 𝐴) ∈ 𝐿1))
37012, 369mpcom 38 1 (𝜑 → (𝑡 ∈ ((𝑃𝑀)[,](𝑃𝑁)) ↦ 𝐴) ∈ 𝐿1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2112   ∪ cun 3882   ∩ cin 3883  {csn 4528   class class class wbr 5033   ↦ cmpt 5113  ‘cfv 6328  (class class class)co 7139  ℂcc 10528  ℝcr 10529  0cc0 10530  1c1 10531   + caddc 10533  ℝ*cxr 10667   < clt 10668   ≤ cle 10669   − cmin 10863  ℤcz 11973  ℤ≥cuz 12235  [,]cicc 12733  ...cfz 12889  ..^cfzo 13032  vol*covol 24070  𝐿1cibl 24225 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-ofr 7394  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039  df-rest 16692  df-topgen 16713  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-top 21503  df-topon 21520  df-bases 21555  df-cmp 21996  df-ovol 24072  df-vol 24073  df-mbf 24227  df-itg1 24228  df-itg2 24229  df-ibl 24230 This theorem is referenced by:  itgspltprt  42614  fourierdlem69  42810
 Copyright terms: Public domain W3C validator